THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ROENNE2012CLICK - Simulate ABR respone to click

Program code:

function [waveVamp,waveVlat] = roenne2012click(stim_level,varargin) 
%ROENNE2012CLICK  Simulate ABR respone to click
%   Usage: [waveVlat]  = roenne2012click(stim_level).
%
%   Output parameters:
%     waveVlat   : Latency of simulated ABR wave V peak.
%     waveVamp   : Amplitude of simulated ABR wave V.
%
%   Input parameters:
%     stim_level      : Simulated levels. Default: Elberling et al. (2010)
%                       stimulus levels (20, 40, 60 dB HL) calibrated to pe
%                       SPL (+ 35.2 dB), see Rønne et al. (2012).   
%
%   ronne2012_click(stim_level) returns click evoked ABR wave V latencies
%   and amplitudes for a range of given stimulus levels. It simulates ABR
%   responses to click stimulus using the ABR model of Rønne et
%   al. (2012). The click stimulus is defined similar to Elberling et
%   al. (2010).
%
%   ---------
%
%   Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
%   this model.
%
%   References:
%     C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
%     responses to different chirp stimuli at three levels of stimulation. J.
%     Acoust. Soc. Am., 128(1):215-223, 2010.
%     
%     F. Roenne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked
%     brainstem responses to transient stimuli. J. Acoust. Soc. Am., accepted
%     for publication, 2012.
%     
%     M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
%     in normal and impaired auditory nerve fibers: Model predictions of
%     responses in cats. J. Acoust. Soc. Am., 122(1):402-417, jul 2007.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/monaural/roenne2012click.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
  
%definput.keyvals.stim_level     = 40:10:100;
%[flags,kv] = ltfatarghelper({},definput,varargin);

fsmod       = 200e3;        % AN model fs.
modellength = 40;           % length of modelling [ms].

% load Unitary Response
[ur,fs]=data_roenne2012;

% Output filter corresponding to recording settings.
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;

%% create click stimulus
% Load click stimulus (c0) from Elberling et al. (2010).
[stim,fsstim] = data_elberling2010('stim'); 

% Define length of stimulus, uses variable modellength.
refstim = zeros(modellength/1000*fs,1);                 

% Create stimulus with chirp stimulus and concatenated zeros => combined
% length = "modellength".
refstim(1:length(stim.c0)) = stim.c0;                                       


%% Simulate ABR - loop over stimulus levels
for L = 1:length(stim_level)
  lvl = stim_level(L);
  
  % call AN model
  ANdata = zilany2007humanized(lvl, refstim, fsstim,fsmod);         
  
  % subtract 50 due to spontaneous rate. 
  ANout = ANdata'-50;                                       
  
  % Sum in time across fibers = summed activity pattern.
  ANsum = sum(ANout,2);                                     
  
  % Downsample ANsum to get fs = fs_UR = 32kHz.
  ANsum = resample(ANsum,fs,fsmod);                         
  
  % Simulated potential = UR * ANsum (* = convolved).
  simpot = filter(ur,1,ANsum);                               
  
  % apply output filter similar to the recording conditions in Elberling
  % et al. (2010).
  simpot = filtfilt(b,a,simpot);                             
  
  % Find max peak value (wave V).
  maxpeak = max(simpot);                                      
  
  % Find corresponding time of max peak value (latency of wave V).
  waveVlat(L)= find(simpot == max(simpot));              
  
  % find minimum in the interval from "max peak" to 6.7 ms later.
  minpeak = min(simpot(find(simpot == maxpeak):find(simpot == maxpeak)+100)); 
  
  % Calculate wave V amplitude, as the difference between the peak and
  % the following dip.
  waveVamp(L) = (maxpeak-minpeak);                           
  
end

% Subtract 15 ms as click stimulus peaks 15 ms into the time series
waveVlat = waveVlat/fs*1000-15;