THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DATA_BAUMGARTNER2014 - Data from Baumgartner et al. (2014)

Program code:

function data = data_baumgartner2014(varargin)
%DATA_BAUMGARTNER2014  Data from Baumgartner et al. (2014)
%   Usage: data = data_baumgartner2014(flag)
%
%   DATA_BAUMGARTNER2014(flag) returns data from Baumgartner et al. (2014)
%   describing a model for sound localization in sagittal planes (SPs)
%   on the basis of listener-specific directional transfer functions (DTFs).
%
%   The flag may be one of:
%
%     'pool'      DTFs and calibration data of the pool. The output contains 
%                 the following fields: id, u, goupell10, walder10,
%                 fs and Obj.
%
%     'baseline'  Same as 'pool', but also with experimental data for
%                 baseline condition.
%
%   The fields in the output contains the following information
%
%     .id         listener ID
%
%     .u          listener-specific uncertainty
%
%     .goupell10  boolean flag indicating whether listener
%                 participated in Goupell et al. (2010)
%
%     .walder10   boolean flag indicating whether listener
%                 participated in Walder (2010)
%
%     .dtfs       matrix containing DTFs.
%                 Dimensions: time, position, channel
%                 (more details see doc: HRTF format)
%
%     .fs         sampling rate of impulse responses
%
%     .pos        source-position matrix referring to
%                 2nd dimension of hM and formated acc.
%                 to meta.pos (ARI format).
%                 6th col: lateral angle
%                 7th col: polar angle
%
%     .Obj        DTF data in SOFA Format
%
%     .pe_exp     experimental local polar RMS error
%
%     .qe_exp     experimental quadrant error rate
%
%     .target     experimental target angles
%
%     .response   experimental response angles
%
%   Requirements: 
%   1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
% 
%   2) Data in hrtf/baumgartner2014
%
%   Examples:
%   ---------
%
%   To get all listener-specific data of the pool, use:
%
%     data_baumgartner2014('pool');
%
%   To get all listener-specific data of the pool including experimental 
%   baseline data, use:
%
%     data_baumgartner2014('baseline');
%
%   See also: baumgartner2014, exp_baumgartner2014
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/humandata/data_baumgartner2014.php

% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR : Robert Baumgartner

%% ------ Check input options --------------------------------------------

% Define input flags
% definput.flags.plot = {'noplot','plot'};
definput.flags.type = {'pool','baseline'};
definput.flags.recalib = {'norecalib','recalib'};
definput.flags.HRTFformat = {'sofa','ari'};

definput.keyvals.mrsmsp=20;     % motoric response scatter in elevation (degrees)
definput.keyvals.gamma=6;       % degree of selectivity
definput.keyvals.do=1;          % spectral gradient

% Parse input options
[flags,kv]  = ltfatarghelper({'mrsmsp','gamma'},definput,varargin);

% if flags.do_missingflag
%   flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
%              sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
%   error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
% end;
    

%% Listener pool (listener-specific SP-DTFs) 
if flags.do_pool || flags.do_baseline
  
  listeners = {'NH12';'NH15';'NH21';'NH22';'NH33';'NH39';'NH41';'NH42';'NH43';...
               'NH46';'NH53';'NH55';'NH58';'NH62';'NH64';'NH68';'NH71';'NH72'};
  data=cell2struct(listeners,'id',2);
             
    for ii = 1:length(data)
      
      data(ii).S = 0.5; % default sensitivity
      
      filename = fullfile(SOFAdbPath,'baumgartner2013',...
        ['ARI_' data(ii).id '_hrtf_M_dtf 256.sofa']);
      
      if exist(filename,'file') ~= 2
        fprintf([' Sorry! Before you can run this script, you have to download the HRTF Database from \n http://www.kfs.oeaw.ac.at/hrtf/database/amt/baumgartner2013.zip , \n unzip it, and move the folder into your HRTF repository \n ' SOFAdbPath ' .\n' ' Then, press any key to quit pausing. \n'])
        pause
      end
      
      data(ii).Obj = SOFAload(filename);
      data(ii).fs = data(ii).Obj.Data.SamplingRate;
      
    end
  
  
  %% Calibration of S
  if not(exist('baumgartner2014calibration.mat','file')) || flags.do_recalib
    
    data = loadBaselineData(data);
    fprintf('Calibration procedure started. Please wait!\n')
    data = baumgartner2014calibration(data,kv);
    
    data_all = data;
    data = rmfield(data,{'Obj','mm1','fs','target','response'}); % reduce filesize
    save(fullfile(amtbasepath,'modelstages','baumgartner2014calibration.mat'),'data')
    data = data_all;
    
  else
    
    if flags.do_baseline
      data = loadBaselineData(data);
    end
    
    c = load('baumgartner2014calibration.mat');
      
    for ss = 1:length(data)
      for ii = 1:length(c.data)
        if strcmp(data(ss).id,c.data(ii).id)
          data(ss).S = c.data(ii).S;
        end
      end
    end
    
  end 

end
    


end



function s = loadBaselineData(s)

latseg = [-20,0,20]; 
dlat = 10;

% Experimental baseline data
numchan = data_goupell2010('BB');
methods = data_majdak2010('HMD_M');
spatstrat = data_majdak2013('BB');
ctcA = data_majdak2013ctc('A');
ctcB = data_majdak2013ctc('B');
ctcL = data_majdak2013ctc('Learn');

for ll = 1:length(s)
  
  s(ll).mm1 = [];
  
  s(ll).mm1 = [s(ll).mm1 ; numchan(ismember({numchan.id},s(ll).id)).mtx];
  s(ll).mm1 = [s(ll).mm1 ; methods(ismember({methods.id},s(ll).id)).mtx];
  s(ll).mm1 = [s(ll).mm1 ; spatstrat(ismember({spatstrat.id},s(ll).id)).mtx];
  s(ll).mm1 = [s(ll).mm1 ; ctcA(ismember({ctcA.id},s(ll).id)).mtx];
  s(ll).mm1 = [s(ll).mm1 ; ctcB(ismember({ctcB.id},s(ll).id)).mtx];
  s(ll).mm1 = [s(ll).mm1 ; ctcL(ismember({ctcL.id},s(ll).id)).mtx];
  
  s(ll).pe_exp = localizationerror(s(ll).mm1,'rmsPmedianlocal');
  s(ll).qe_exp = localizationerror(s(ll).mm1,'querrMiddlebrooks');   
  
  for ii = 1:length(latseg)
    
    latresp = s(ll).mm1(:,7);
    idlat = latresp <= latseg(ii)+dlat & latresp > latseg(ii)-dlat;
    mm2 = s(ll).mm1(idlat,:);
    
    s(ll).pe_exp_lat(ii) = localizationerror(mm2,'rmsPmedianlocal');
    s(ll).qe_exp_lat(ii) = localizationerror(mm2,'querrMiddlebrooks');
    
    s(ll).target{ii} = mm2(:,6); % polar angle of target
    s(ll).response{ii} = mm2(:,8); % polar angle of response
    s(ll).Ntargets{ii} = length(s(ll).target{ii});

  end

  
end

end