THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

TAKANEN2013MSO - Model of the medial superior olive

Program code:

function output = takanen2013mso(ipsilateral, contralateral, fs, fc, printfigs)
%TAKANEN2013MSO Model of the medial superior olive
%   Usage: output = takanen2013mso(ipsilateral, contralateral, fs, fc, printfigs)
%
%   Input parameters:
%        ipsilateral   : The ipsilateral "where" stream output from the
%                        model of the periphery
%        contralateral : The contralateral "where" stream output from the
%                        model of the periphery
%        fs            : sampling rate
%        printFigs     : boolean value that defines whether several figures
%                        illustrating the processing steps in the model are
%                        plotted or not. As default, no figures are 
%                        plotted.
%
%   Output parameters:
%        output : Spatial cues for separate narrow bandwidths
%
%   This function models the medial superior olive (MSO) by processing the 
%   output of the periphery model with the following steps:
%
%   1) Delay and convolution is applied to the contralateral signal and
%      the ipsilateral signal is limited and normalized.
%
%   2) Coincidence detection between the ipsilateral and contralateral
%      signals.
%
%   3) Weighted and self-weighted moving average filters are applied to
%      the outputs of the coincidence detection and contralateral signal,
%      respectively, and the output is limited.
%
%   See also: takanen2013, takanen2013periphery, weightedaveragefilter
%
%   References:
%     V. Pulkki and T. Hirvonen. Functional count-comparison model for
%     binaural decoding. Acta Acustica united with Acustica, 95(5):883 - 900,
%     Sept./Oct. 2009.
%     
%     M. Takanen, O. Santala, and V. Pulkki. Visualization of functional
%     count-comparison-based binaural auditory model output. Manuscript in
%     revision, 2013.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/modelstages/takanen2013mso.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   AUTHOR: Marko Takanen, Olli Santala, Ville Pulkki
%
%   COPYRIGHT (C) 2013 Aalto University
%                      School of Electrical Engineering
%                      Department of Signal Processing and Acoustics
%                      Espoo, Finland


nrows = size(contralateral,1);
t=(0:(nrows-1))./fs;
% If desired, the computations are illustrated at two characteristic
% frequencies
band=[8,10];

%% ------ The contralateral ear input is delayed by 0.4 ms ----------------
contraDelay = round(0.0004*fs);
contralateral = [zeros(contraDelay,size(contralateral,2));...
    contralateral(1:size(contralateral,1)-contraDelay,:)];

if(printfigs)
    figure(91);
    g(1)=subplot(2,1,1);plot(t,ipsilateral(:,band(1)),'-b',t,contralateral(:,band(1)),'--r');
    g(2)=subplot(2,1,2);plot(t,ipsilateral(:,band(2)),'-b',t,contralateral(:,band(2)),'--r');
    linkaxes(g,'x');title('Ipsi and contra inputs');
end

%% ------ Convolution with the contra response ----------------------------
limit2 = find(fc>=1500,1,'first');
for freqind = 1:length(fc)
    if freqind<limit2
        n = (0:1:(fs/fc(freqind)))';
        f =0.25*(cos(2*pi*(fc(freqind)*n/fs).^.25-pi)+1).^2;
    end
    convolved = conv(contralateral(:,freqind),f)/sum(f);
    contralateral(:,freqind) = convolved(1:nrows);
end

if(printfigs)
    figure(92);
    g(1)=subplot(2,1,1);plot(t,ipsilateral(:,band(1)),'-b',t,contralateral(:,band(1)),'--r');
    g(2)=subplot(2,1,2);plot(t,ipsilateral(:,band(2)),'-b',t,contralateral(:,band(2)),'--r');
    linkaxes(g,'x');title('Ipsi and contra after the contra response');
end

%% ------ Limiting of the ipsilateral input -------------------------------
% Limit values are determined for each frequency based on white noise at 30
% dB SPL
load takanen2013_msolimits.mat -mat
limited = ipsilateral./(ones(nrows,1)*limits);
limited(limited>1) =1;

%% ------ Coincidence detection -------------------------------------------
output = (limited.*contralateral);

if(printfigs)
    figure(93);
    plot(t,output(:,band(2)),t,contralateral(:,band(2)),'-r');
    title('Coincidence and contralateral');
end

%% ------ Weighted and self-weighted moving averages of 4 ms --------------
output = weightedaveragefilter(output,contralateral,fs,0.004) ./ (weightedaveragefilter(contralateral,contralateral,fs,0.004)+1e-30);
% tau = 0.004; 
% B = 1-exp(-1/(tau*fs));
% A = [1 -exp(-1/(tau*fs))];
% self_weighted = filter(B,A,(contralateral.^3));
% weighted = filter(B,A,(output.*(contralateral.^2)));
% output = weighted./(self_weighted+1e-30);
output(output>1) = 1;