THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

TAKANEN2013PERIPHERY - Process the input through the model of periphery

Program code:

function periphOutput = takanen2013periphery(insig,fs,outputPlot)
%TAKANEN2013PERIPHERY Process the input through the model of periphery         
%   Usage: periphOutput = takanen2013periphery(insig,fs,outputPlot);
%          periphOutput = takanen2013periphery(insig,fs);
%
%   Input parameters:
%        insig      : binaural input signal to be processed. Optionally,
%                     the output of the cochlear model by Verhulst et. al.
%                     2012 can be used as well
%        fs         : sampling rate
%        outputPlot : boolean value that defines whether the periphery
%                     model output at different frequency bands are plotted
%
%   Output parameters:
%        periphOutput : Structure consisting of the following elements
%
%                       periphOutput.left
%                          Left ear "where" stream output
% 
%                       periphOutput.right  
%                           Right ear "where" stream output
%
%                       periphOutput.fc
%                           Characteristic frequencies
%
%                       periphOutput.ventralLeft
%                           Left hemisphere "what" stream output 
%
%                       periphOutput.ventralLeft
%                           Right hemisphere "what" stream output
%
%   This function processes the binaural input signal through the model of
%   periphery presented by Takanen, Santala, Pulkki 2013, the model which
%   consists of a nonlinear time-domain model of cochlea and model of
%   cochlear nucleus. The processing contains the following steps:
%
%   1) the binaural input signal is processed with the nonlinear time-
%      domain model of cochlea by Verhulst et. al. 2013 to obtain the
%      velocity of basilar membrane movement at different positions
%
%   2) the obtained velocity information is half-wave rectified
%
%   3) the half-waves are replaced with Gaussian pulses centered around
%      the local maxima of the half-waves
%
%   4) the frequency-dependent delays of the cochlea model are
%      compensated
%
%   See also: takanen2013, verhulst2012
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/modelstages/takanen2013periphery.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   References: takanen2013a pulkki2009 verhulst2012
%
%   AUTHOR: Marko Takanen, Olli Santala, Ville Pulkki
%
%   COPYRIGHT (C) 2013 Aalto University
%                      School of Electrical Engineering
%                      Department of Signal Processing and Acoustics
%                      Espoo, Finland

%% ------ Check the input arguments ---------------------------------------
if nargin<3
    outputPlot =0;
end

%specify the characteristic frequencies of the model
fc = erbtofreq(4:39);
spl = 60; % sound pressure level of the input signal 
%% ------ Process the binaural input with the cochlear model --------------

if isstruct(insig)
    % input to the periphery model can be also a output of the Verhulst
    % cochlear model
    cochlear = insig;
else
    norm_factor=max(abs(insig(:,1)));     %first channel as reference for rms normalization
    insig(:,1)=insig(:,1)./norm_factor;
    insig(:,2)=insig(:,2)./norm_factor;
    [V,Y,E,CF] = verhulst2012(insig,fs,fc,[spl spl]);
    cochlear.velocityLeft=V(:,:,1);
    cochlear.velocityRight=V(:,:,2);
end

%load a vector of frequency specific delays computed for the Verhulst model
%outputs at fc
load takanen2013_cochleardelays -mat
cochlear.delaysV = velocitydelays;

%use the velocity of the basilar membrane movement as input to CN model
processed.left = cochlear.velocityLeft;processed.right = cochlear.velocityRight;
[nVals nBands] = size(processed.left);

%% ------ Half-wave rectification -----------------------------------------
processed.left= processed.left.*(processed.left >0);
processed.right= processed.right.*(processed.right >0);
periphOutput.ventralLeft = processed.right;
periphOutput.ventralRight = processed.left;

%% ------ Impulse generation ----------------------------------------------
%search of the local maximas of each half-wave separately for left and 
%right ear signals
for chanInd=1:nBands
    left = processed.left(:,chanInd);
    right = processed.right(:,chanInd);
    processed.left(:,chanInd) = zeros(nVals,1);
    processed.right(:,chanInd) = zeros(nVals,1);

    %start end end points for each half-wave
    startingPoints = strfind((left'>0),[0 1]);
    endpoints = [strfind((left'>0),[1 0])+1 length(left)];
    if (isempty(startingPoints) && ~isempty(endpoints))
        startingPoints = 1;
    else
        if startingPoints(1)>=endpoints(1)
            startingPoints = [1 startingPoints];
        end
    end
    
    rmsVals=zeros(size(startingPoints));
    locations = rmsVals;
    nsamples = endpoints(1:length(startingPoints))-startingPoints+1;
    %compute the rms values of each half-wave and position it at the local
    %maximum
    for locInd=1:length(startingPoints)
        rmsVals(locInd)= norm(left(startingPoints(locInd):endpoints(locInd)))/sqrt(nsamples(locInd));
        [unnecessary, locations(locInd)] = max(left(startingPoints(locInd):endpoints(locInd)));
    end
    processed.left(locations+startingPoints-1,chanInd) = rmsVals';

    %processing of the right channel
    
    %start end end points for each half-wave
    startingPoints = strfind((right'>0),[0 1]);
    endpoints = [strfind((right'>0),[1 0])+1 length(right)];
    if (isempty(startingPoints) && ~isempty(endpoints))
        startingPoints = 1;
    else
        if startingPoints(1)>=endpoints(1)
            startingPoints = [1 startingPoints];
        end
    end
    %compute the rms values of each half-wave and position it at the local
    %maximum
    rmsVals= zeros(size(startingPoints));locations = rmsVals;
    nsamples = endpoints(1:length(startingPoints))-startingPoints+1;
    for locInd=1:length(startingPoints)
        rmsVals(locInd)= norm(right(startingPoints(locInd):endpoints(locInd)))/sqrt(nsamples(locInd));
        [unnecessary, locations(locInd)] = max(right(startingPoints(locInd):endpoints(locInd)));
    end
    processed.right(locations+startingPoints-1,chanInd) = rmsVals';

end
%% ------ Convolution with Gaussian window-functions ----------------------
% the width of the Gaussian window in the peripheral hearing model depends
% on the center frequency
N = zeros(size(fc));
N(fc<800) = round((2./fc(fc<800))*fs);
indMid = find(((800<=fc).*(fc<=2800))==1);N(indMid) = round(0.0024*(0.6+0.4*fc(indMid)./800)*fs);
N(fc>2800) = round(0.0048*fs);
% the constant alpha is set to 20
alpha=20;

periphOutput.left = zeros(nVals,nBands);periphOutput.right = periphOutput.left;
for chanInd=1:nBands
    left = processed.left(:,chanInd);
    right = processed.right(:,chanInd);
    n = -N(chanInd)/2:1:N(chanInd)/2;
    winFunction = (exp(-0.5*(alpha*n/(N(chanInd)/2)).^2))';
    %convolution with the gaussian window function
    left = (1/sum(winFunction))*conv(left,winFunction,'same');
    right = (1/sum(winFunction))*conv(right,winFunction,'same');

    %% compensation for the cochlear model delays
    periphOutput.left(:,chanInd) = [left(cochlear.delaysV(chanInd)+1:end);zeros(cochlear.delaysV(chanInd),1)];
    periphOutput.right(:,chanInd) = [right(cochlear.delaysV(chanInd)+1:end);zeros(cochlear.delaysV(chanInd),1)];
    periphOutput.ventralLeft(:,chanInd) = [periphOutput.ventralLeft(cochlear.delaysV(chanInd)+1:end,chanInd);zeros(cochlear.delaysV(chanInd),1)];
    periphOutput.ventralRight(:,chanInd) = [periphOutput.ventralRight(cochlear.delaysV(chanInd)+1:end,chanInd);zeros(cochlear.delaysV(chanInd),1)];
end

periphOutput.fc = fc;
%% ------ Plot the periphery model output, if desired ---------------------
if outputPlot
    figure(90);
    g(1) = subplot(6,1,1);plot((0:length(insig(:,1))-1)./(fs/1000),insig(:,1));ylabel('Input');set(gca,'yTick',[]);
    g(2) = subplot(6,1,2);plot((0:size(periphOutput.left,1)-1)./(fs/1000),periphOutput.left(:,4));title([num2str(round(fc(4))) ' Hz']);
    g(3) = subplot(6,1,3);plot((0:size(periphOutput.left,1)-1)./(fs/1000),periphOutput.left(:,9));title([num2str(round(fc(9))) ' Hz']);
    g(4) = subplot(6,1,4);plot((0:size(periphOutput.left,1)-1)./(fs/1000),periphOutput.left(:,16));title([num2str(round(fc(16))) ' Hz']);
    g(5) = subplot(6,1,5);plot((0:size(periphOutput.left,1)-1)./(fs/1000),periphOutput.left(:,22));title([num2str(round(fc(22))) ' Hz']);
    g(6) = subplot(6,1,6);plot((0:size(periphOutput.left,1)-1)./(fs/1000),periphOutput.left(:,28));title([num2str(round(fc(28))) ' Hz']);
    xlabel('Time [ms]');
    linkaxes(g,'x');
    clear g
end