THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ROENNE2012 - Simulates an ABR to any given stimulus

Program code:

function [waveVamp, waveVlat]  = roenne2012(stim,fsstim,stim_level,varargin)
%ROENNE2012 Simulates an ABR to any given stimulus
%   Usage: [waveVamp, waveVlat]  = roenne2012(flag)
%
%   Output parameters:
%     waveVamp   : Amplitude of simulated ABR wave V.
%     waveVlat   : Latency of simulated ABR wave V peak.
%
%   ROENNE2012(stim,fsstim,stim_level) returns simulated ABR wave V
%   latency and amplitude. The stimulus stim must be defined in pascals
%   and calibrated so a pure tone stimulus has an RMS value of 1. Transient
%   stimuli (which this model is designed to simulate) has to be calibrated
%   in peSPL acoustically. This is *not* the same as "just" having a
%   numerical peak to peak value of the same level as the pure tone. For
%   calibrated click, chirps and tone bursts, see ROENNE2012CLICK,
%   ROENNE2012TONEBURSTS and ROENNE2012CHIRP.
%
%   The parameter fsstim gives the sampling frequency of the input
%   stimulus, and stim_level the level. As input is calibrated to an
%   RMS-value of 1, a stimulus level in (pe)SPL has to be set.
%
%   The flag may be one of:
%
%     'plot'            Plot the output. See PLOTROENNE2012.
%  
%     'noplot'          Do not plot. This is the default.
%
%     'fsmod',fsmod     Auditory nerve model sampling frequency.
%                       Default value is 200000.
%      
%     'flow',flow       Auditory nerve model lowest center frequency.
%                       Default value is 100 Hz.
%
%     'fhigh',fhigh     Auditory nerve model highest center frequency.
%                       Default value is 16000 Hz.
%
%     'min_modellength',mn 
%                       Minimum length of modelling measured in ms.
%                       Default value is 40.
%
%   Examples:
%   ---------
%
%   Simulates a click evoked ABR (c0 of the loaded file is a click). Note
%   that the click loaded in this example starts after 15ms. The simulated
%   wave V latency is thus also 15 ms "late" :
%
%     stim=data_elberling2010('stim'); 
%     roenne2012(stim.c0,30e3,60,'plot')
%
%   ---------
%
%   Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
%   this model.
%
%   References:
%     C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
%     responses to different chirp stimuli at three levels of stimulation. J.
%     Acoust. Soc. Am., 128(1):215-223, 2010.
%     
%     F. Roenne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked
%     brainstem responses to transient stimuli. J. Acoust. Soc. Am., accepted
%     for publication, 2012.
%     
%     M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
%     in normal and impaired auditory nerve fibers: Model predictions of
%     responses in cats. J. Acoust. Soc. Am., 122(1):402-417, jul 2007.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/monaural/roenne2012.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% Define input flags
definput.flags.plot     = {'plot','noplot'};
definput.keyvals.fsmod=200000;
definput.keyvals.flow = 100;
definput.keyvals.fhigh = 16000;
definput.keyvals.min_modellength=40;
[flags,kv]      = ltfatarghelper({},definput,varargin);

%% Init
[ur,fs] = data_roenne2012;

% Assure minimum model length of 40ms
if length(stim)/fsstim < kv.min_modellength/1000                               
    stim_temp = zeros(1, fsstim*kv.min_modellength/1000);
    stim_temp(1:length(stim)) = stim;
    stim = stim_temp;
end

%% ABR model
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007humanized(stim_level, stim, fsstim, kv.fsmod, 'flow',kv.flow, 'fhigh',kv.fhigh);   

% subtract 50 due to spontaneous rate
ANout = ANout'-50;                                            

% Sum in time across fibers, summed activity pattern
ANsum1 = sum(ANout,2);                 

% Downsample ANsum to get fs = fs_UR = 32kHz
ANsum = resample(ANsum1,fs,kv.fsmod); 

% Simulated potential = UR * ANsum (* = convolution)
simpot = filter(ur,1,ANsum);        

% Find max peak value (wave V)
maxpeak = max(simpot);                                          

% Find corresponding time of max peak value (latency of wave V). The unit
% is [ms]. 
waveVlat = find(simpot == maxpeak)/fs*1000; 

% find minimum in the interval from "max peak" to 6.7 ms later
minpeak = min(simpot(find(simpot == max(simpot)):...
                     find(simpot == max(simpot))+200)); 

% Calculate wave V amplitude, as the difference between the peak and the
% dip, in [\mu p] (micro pascals).
waveVamp = (maxpeak-minpeak);                               

if flags.do_plot
  plotroenne2012(stim_level,waveVamp, waveVlat, simpot, ANout, 'flow',kv.flow, 'fhigh', kv.fhigh);
end