This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
%DEMO_BAUMGARTNER2016 Demo for sagittal-plane localization model from Baumgartner et al. (2016)
%
% DEMO_BAUMGARTNER2016 demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% for a listener of the listener pool and the median plane using the
% sagittal-plane localization model from Baumgartner et al. (2016).
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener with outer-hair-cell dysfunction.
%
% See also: baumgartner2016 exp_baumgartner2016 baumgartner2014_virtualexp
% localizationerror
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.8/doc/demos/demo_baumgartner2016.php
% Copyright (C) 2009-2015 Piotr Majdak and Peter L. Søndergaard.
% This file is part of AMToolbox version 0.9.8
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
%% Settings
condition = 'baseline';
subID = 'NH33'; % subject ID of exemplary listener
lat = 0; % lateral target angle in degrees
SPL = 60; % SPL of target sound
runs = 1; % # of virtual experimental runs
cohc = 0.4; % outer-hair-cell dysfunction
do_plot = true; % flag for plotting predicted response PMVs
performanceMetric = 'querrMiddlebrooks';
%% Get listener's data
s = data_baumgartner2016; % load data of listener pool
ids = find(ismember({s.id},subID)); % index of exemplary listener
%% Run model
[err,pred,m] = baumgartner2016(s(ids).Obj,s(ids).Obj,'ID',subID,'Condition',condition,...
'lat',lat,'S',s(ids).S,'SPL',SPL,'cohc',cohc,performanceMetric);
%% Comparison with actual performance metric
err_exp = localizationerror(s(ids).itemlist,performanceMetric);
disp(['Actual normal-hearing performance (',performanceMetric,'): ',num2str(err_exp,'%2.1f')])
disp(['Predicted performance (',performanceMetric,'): ',num2str(err,'%2.1f')])
%% Plot results
figure;
plot_baumgartner2014(pred.p,pred.tang,pred.rang);
title([subID,', C_{OHC} = ',num2str(cohc,'%1.1f')])