THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

BAUMGARTNER2017 - Model for sound externalization

Program code:

function [E,varargout] = baumgartner2017( target,template,varargin )
%BAUMGARTNER2017 Model for sound externalization
%   Usage:    [E,lat] = baumgartner2017( target,template )
%
%   Input parameters:
%     target  : binaural impulse response(s) referring to the directional 
%               transfer function(s) (DFTs) of the target sound(s).
%               Option 1: given in SOFA format -> sagittal plane DTFs will 
%               be extracted internally. 
%               Option 2: binaural impulse responses of all available
%               listener-specific DTFs of the sagittal plane formated 
%               according to the following matrix dimensions: 
%               time x direction x channel/ear
%     template: binaural impulse responses of all available
%               listener-specific DTFs of the sagittal plane referring to
%               the perceived lateral angle of the target sound.
%               Options 1 & 2 equivalent to target.
%
%   Output parameters:
%     E       : predicted degree of externalization
%     lat     : lateral angle as predicted by wierstorf2013 model
%
%   BAUMGARTNER2017(...) is a model for sound externalization.
%   It bases on the comparison of the intra-aural internal representation
%   of the incoming sound with a template and results in a probabilistic
%   prediction of polar angle response.
%
%   BAUMGARTNER2017 accepts the following optional parameters:
%
%     'fs',fs        Define the sampling rate of the impulse responses. 
%                    Default value is 48000 Hz.
%
%     'S',S          Set the listener-specific sensitivity threshold 
%                    (threshold of the sigmoid link function representing 
%                    the psychometric link between transformation from the
%                    distance metric and similarity index) to S. 
%                    Default value is 1.
%
%     'lat',lat      Set the apparent lateral angle of the target sound to
%                    lat. Default value is 0 degree (median SP).
%
%     'stim',stim    Define the stimulus (source signal without directional
%                    features). As default an impulse is used.
%
%     'fsstim',fss   Define the sampling rate of the stimulus. 
%                    Default value is 48000 Hz.
%
%     'flow',flow    Set the lowest frequency in the filterbank to
%                    flow. Default value is 700 Hz.
%
%     'fhigh',fhigh  Set the highest frequency in the filterbank to
%                    fhigh. Default value is 18000 Hz.
%
%     'space',sp     Set spacing of auditory filter bands (i.e., distance 
%                    between neighbouring bands) to sp in number of
%                    equivalent rectangular bandwidths (ERBs). 
%                    Default value is 1 ERB.
%
%     'do',do        Set the differential order of the spectral gradient 
%                    extraction to do. Default value is 1 and includes  
%                    restriction to positive gradients inspired by cat DCN
%                    functionality.
%
%     'bwcoef',bwc   Set the binaural weighting coefficient bwc.
%                    Default value is 13 degrees.
%
%   Requirements: 
%   -------------
%
%   1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
% 
%   2) Data in hrtf/baumgartner2017
%
%   3) Circular Statistics Toolbox from http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
%
%
%   See also: baumgartner2014_spectralanalysis,
%   baumgartner2014_gradientextraction, baumgartner2014_binauralweighting
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.8/doc/models/baumgartner2017.php

% Copyright (C) 2009-2015 Piotr Majdak and Peter L. Søndergaard.
% This file is part of AMToolbox version 0.9.8
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria

%% Check input

definput.import={'baumgartner2014','baumgartner2014_pmv2ppp','localizationerror','amt_cache'};
definput.keyvals.tempWin = 1; % temporal integration window in sec
definput.flags.normalize = {'regular','normalize'};
definput.flags.cueProcessing = {'intraaural','interaural'};
definput.flags.middleEarFilter = {'','middleEarFilter'};
definput.keyvals.JND = 1.5;
definput.keyvals.c1 = 3.78;
definput.keyvals.c2 = 1;
definput.keyvals.z1 = 0.99;

[flags,kv]=ltfatarghelper(...
  {'fs','S','lat','stim','space','do','flow','fhigh',... %'fsstim'
  'bwcoef','polsamp','rangsamp','mrsmsp','gamma'},definput,varargin);

if not(isstruct(target)) && ismatrix(target)
  target = permute(target,[1,3,2]);
%   warning(['Matrix dimensions of target should be: time x direction x channel/ear.' ...
%    'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end

if not(isstruct(template)) && ismatrix(template)
  template = permute(template,[1,3,2]);
%   warning(['Matrix dimensions of template should be: time x direction x channel/ear.' ... 
%     'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end

%% Print Settings

if flags.do_print 
  if flags.do_nomrs
    kv.mrsmsp = 0;
  end
  amt_disp(['Settings: PSGE = ' num2str(kv.do,'%1.0f') '; Gamma = ' ...
    num2str(kv.gamma,'%1.0u') '; Epsilon = ' num2str(kv.mrsmsp,'%1.0f') ' deg'])
end


%% Determine lateral angle and extract HRTFs of sagittal plane
 
if isstruct(target) % Targets given in SOFA format
  kv.fs = target.Data.SamplingRate;
  [target,tang] = extractsp( kv.lat,target );
% else
%   fncache = ['latLookup_',template.GLOBAL_ListenerShortName];
%   latLookup = amt_cache('get',fncache,flags.cachemode);
%   if isempty(latLookup)
%     latLookup = itd2angle_lookuptable(template,template.Data.SamplingRate,'dietz2011');
%     amt_cache('set',fncache,latLookup)
%   end
%   tarSig = squeeze(target);
%   kv.lat = wierstorf2013_estimateazimuth(tarSig,latLookup,'fs',kv.fs,'dietz2011','rms_weighting');
%   disp(kv.lat)
end

if isstruct(template) % Template given in SOFA format
  [template,rang] = extractsp( kv.lat,template );
end

% Error handling
% if size(template,2) ~= length(rang)
%   fprintf('\n Error: Second dimension of template and length of polsamp need to be of the same size! \n')
%   return
% end

%% Middle ear filter
if flags.do_middleEarFilter
  b=middleearfilter(kv.fs);
  target = filter(b,1,target);
  template = filter(b,1,template);
end

%% DTF filtering, Eq.(1)

dimtar = size(target); % for lconv dim check

if not(isempty(kv.stim))
  target = lconv(target,kv.stim);
end

% check that lconv preserved matrix dimensions (earlier bug in lconv)
if size(target,2) ~= dimtar(2)
  target = reshape(target,[size(target,1),dimtar(2:end)]);
end

frameLength = round((kv.tempWin*kv.fs));
Nframes = floor(size(target,1)/frameLength);
if Nframes == 0
  Nframes = 1;
  frameLength = size(target,1);
  target = cat(1,target,zeros(frameLength-size(target,1),size(target,2),size(target,3)));
end
Nang = size(template,2);
bsi = nan(Nframes,Nang);
tem.mp = [];
for iframe = 1:Nframes
  idt = (1:frameLength) + (iframe-1)*frameLength;
  
%% Spectral Analysis, Eq.(2)

[tar.mp,fc] = baumgartner2014_spectralanalysis(target(idt,:,:),'argimport',flags,kv);
if isempty(tem.mp) % integration across whole time range
  tem.mp = baumgartner2014_spectralanalysis(template,'argimport',flags,kv);
end


if flags.do_intraaural
  %% Positive spectral gradient extraction, Eq.(3)
  if kv.do == 1 % DCN inspired feature extraction
    nrep.tem = baumgartner2014_gradientextraction(tem.mp,fc);
    nrep.tar = baumgartner2014_gradientextraction(tar.mp,fc);
  else
    nrep.tem = tem.mp;
    nrep.tar = tar.mp;
  end

  %% Comparison process, Eq.(4)
%   sigma = baumgartner2017comparisonprocess(nrep.tar,nrep.tem); % based on vector product with 0s excluded (nan)
%   sigma = mean(repmat(nrep.tar,1,Nang).*nrep.tem)./mean(nrep.tem.^2);
  dNrep = abs(repmat(nrep.tar,1,Nang)-nrep.tem);
  dNrep(dNrep < kv.JND) = 0;
  sigma = mean(dNrep);

  %% Similarity estimation, Eq.(5)
  si = exp(-kv.S*sigma);
%   si = sigma.^kv.S;
  % si = baumgartner2014_similarityestimation(sigma,'argimport',flags,kv);

  %% Binaural weighting, Eq.(6)
  bsi(iframe,:) = baumgartner2014_binauralweighting(si,'argimport',flags,kv);

  %% Normalize
%   if flags.do_normalize
% %     if not(exist('bsiRef','var'))
%       sigmaRef = baumgartner2017comparisonprocess(nrep.tem,nrep.tem);
%       siRef = sigmaRef.^kv.S;
%       bsiRef = baumgartner2014_binauralweighting(siRef,'argimport',flags,kv);
% %     end
%     bsi(iframe) = bsi(iframe)/bsiRef;
%   end

else % interaural
  
  %% ILDs
  tar.ild = -diff(tar.mp,1,3); % ILD = left - right
  tem.ild = -diff(tem.mp,1,3);
  % figure; plot(fc,tar.ild); hold on; plot(fc,tem.ild); legend('tar','tem')

  %% target-template comparison -> ILD deviation
  dILD = abs(tem.ild-repmat(tar.ild,1,Nang));
  dILD(dILD < kv.JND) = 0; % limit minimum ILD difference according to JND

  %% overall normalized ILD deviation
  dILDnorm(iframe,:) = mean(dILD./abs(tem.ild));
  
  %% Externalization mapping
  bsi(iframe,:) = exp(-kv.S*dILDnorm(iframe,:));

end

%% Scaling
bsi(iframe) = kv.c1*bsi(iframe) +kv.c2;

end
E = max(bsi);%min(1,max(bsi));%geomean(bsi);
if nargout >= 2
  varargout{1} = kv.lat;
end

  
end