THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

LANGENDIJK2002 - Localization model according to Langendijk et al. (2002)

Program code:

function pmv = langendijk2002(targets,template,varargin)
%LANGENDIJK2002 Localization model according to Langendijk et al. (2002)
%   Usage:    pmv = langendijk2002(targets,template)
%             pmv = langendijk2002(targets,template,fs,bw,s,do,flow,fhigh)
%
%   Input parameters:
%     targets  : head-related impulse responses (HRIRs) of target sounds 
%                (sorted acc. ascending polar angle)
%     template : HRIRs of template
%
%   Output parameters:
%     pmv     : Predicted probability mass vectors (PMVs) of polar response
%               angles as a function of the polar target angle.
%
%   LANGENDIJK2002(targets,template,... ) results to a two dimensional matrix p.  The
%   first dimension represents all possible response positions in
%   increasing order and the second dimension all possible target
%   respectively source positions. Consequently each column represents the
%   predicted probability mass vector (PMV) of the polar response angle 
%   distribution for one special target position. If you want to plot this 
%   prediction matrix use PLOT_LANGENDIJK2002.
%
%   LANGENDIJK2002 accepts the following optional parameters.
%
%     'fs',fs        Sampling rate of the head-related impulse responses.
%  
%     'bw',bw        Bandwidth of filter bands as partial of an octave. The
%                    default value is 6.
%
%     'do',do        Differential order. The default value is 0.
%
%     's',s          Standard deviation of transforming Gaussian
%                    function; default value is 2.
%
%     'flow',flow    Lower cutoff frequency of filter bank. min: 0,5kHz; default: 2kHz
%
%     'fhigh',fhigh  Upper cutoff frequency of filter bank; default: 16kHz
%
%   LANGENDIJK2002 accepts the following flags.
%
%     'std'          Apply Gaussian transformed standard deviation of 
%                    inter-spectral differences for comparison process. 
%                    This is the default.
%  
%     'xcorr'        Apply crosscorrelation for comparison process.
%
%   See also: plot_langendijk2002
%
%   References:
%     E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
%     sound localization. J. Acoust. Soc. Am., 112:1583-1596, 2002.
%     
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.8/doc/models/langendijk2002.php

% Copyright (C) 2009-2015 Piotr Majdak and Peter L. Søndergaard.
% This file is part of AMToolbox version 0.9.8
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR : Robert Baumgartner, OEAW Acoustical Research Institute
  
  
  definput.import={'langendijk2002_comp'};
  definput.keyvals.bw=6;
  definput.keyvals.flow=2000;
  definput.keyvals.fhigh=16000;
  definput.keyvals.stim=[];
  definput.keyvals.fs=48000;
  
  [flags,kv]=ltfatarghelper({'fs','bw','s','do','flow','fhigh'},definput,varargin);
  
  % Stimulus (not considered in original model)
  if not(isempty(kv.stim))
    tmp = convolve(kv.stim,targets);
    targets = reshape(tmp,[size(tmp,1),size(targets,2),size(targets,3)]);
  end
  
  % Filter bank
  x = langendijk2002_spectralanalysis(targets,kv.fs,kv.flow,kv.fhigh,kv.bw);
  y = langendijk2002_spectralanalysis(template,kv.fs,kv.flow,kv.fhigh,kv.bw);
  
  % Comparison process
  si=zeros(size(template,2),size(targets,2),size(template,3)); % initialisation
  for ii=1:size(targets,2)
      si(:,ii,:) = langendijk2002_comp(x(:,ii,:),y,'argimport',flags,kv);
  end
  
  % Binaural average
  si = mean(si,3);
  
  % Normalization to PMV
  pmv = si ./ repmat(sum(si),size(si,1),1);
  
end