function outsig = sig_bincorrnoise(siglen,coher,varargin)
% sig_bincorrnoise Binaurally correlated noise
% Usage: outsig = sig_bincorrnoise(siglen,coher)
%
% Input parameters:
% siglen : Number of samples of outsig
% coher : Interaural coherence of the produced signal.
%
% Output parameters:
% outsig : nsig x2 correlated noise signal
%
% SIG_BINCORRNOISE(siglen,coher) will generate a interaurally correlated noise signal
% with coherence coher. The output is a 2 column matrix of length siglen.
%
% SIG_BINCORRNOISE(siglen,coher,...) will pass all additional parameters
% onto the noise function to select between different types of stochastic
% noise.
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.8/doc/signals/sig_bincorrnoise.php
% Copyright (C) 2009-2015 Piotr Majdak and Peter L. Søndergaard.
% This file is part of AMToolbox version 0.9.8
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Hagen Wierstorf
% ------ Checking of input parameters ------------------------------------
if nargin<2
error('%s: Too few input parameters.',upper(mfilename));
end;
if ( ~isnumeric(siglen) || ~isscalar(siglen) || siglen<0 )
error('%s: siglen has to be a positive scalar.',upper(mfilename));
end
if ( ~isnumeric(coher) || ~isscalar(coher) || coher<0)
error('%s: coher has to be a positive scalar.',upper(mfilename));
end
% ------ Computation -----------------------------------------------------
% Generate correlation matrix
R = [1 coher; coher 1];
% Eigen decomposition
[V,D] = eig(R);
% Form correlating filter
W = V*sqrt(D);
% Generate uncorrelated noise
n = noise(siglen,2,varargin{:});
% Correlate the noise
outsig = n * W';