THE AUDITORY MODELING TOOLBOX

Applies to version: 1.0.0

View the help

Go to function

GAMMACHIRP - Gammachirp filter coefficients

Program code:

function [b,a]=gammachirp(fc,fs,varargin)
%GAMMACHIRP  Gammachirp filter coefficients
%   Usage: [b,a] = gammachirp(fc,fs,n,betamul);
%          [b,a] = gammachirp(fc,fs,n);
%          [b,a] = gammachirp(fc,fs);
%
%   Input parameters:
%      fc    : center frequency in Hz.
%      fs    : sampling rate in Hz.
%
%   gammachirp takes the following key-value pairs:
%     'order', n     :  filter order (order of Gamma function t^(OrderG-1) ).
%     'beta', b  :  bandwidth of the filter (exp(-2*pi*CoefERBw*ERB(f))).
%     'c', c     :  c-coefficient exp(j*2*pi*Frs + CoefC*ln(t)).
%     'phase', phase :  initial phase (0 ~ 2*pi)
%
%   gammachirp takes the following flags
%     carrier : Carrier ('cos','sin','complex','envelope': 3 letters)
%     norm  : Normalization of peak spectrum level ('no', 'peak')
% 
%
%   Output parameters:
%      b     :  nominator coefficients.
%      a     :  denominator coefficients.
%
%   GAMMACHIRP(fc,fs,n,betamul) computes the filter coefficients of a
%   digital gammachirp filter with center frequency fc, order n, sampling
%   rate fs and bandwith determined by betamul. The bandwidth beta of
%   each filter is determined as betamul times audfiltbw of the center
%   frequency of corresponding filter.
%
%   By default, the returned filter coefficients comes from the all-pole
%   approximation described in Lyon (1997). The filters are normalized to
%   have a 0 dB attenuation at the center frequency (another way of
%   stating this is that their impulse responses will have unit area).
%
%   GAMMACHIRP(fc,fs) will do as above for a 4th order filter.
%
%   If fc is a vector, each entry of fc is considered as one center
%   frequency, and the corresponding coefficients are returned as row
%   vectors in the output.
%
%   The impulse response of the gammachirp filter is given by:
%
%        g(t) = a*t^(n-1)*cos(2*pi*fc*t)*exp(-2*pi*beta*t)
%
%  
%
%   To create the filter coefficients of a 1-erb spaced filter bank using
%   gammachirp filters use the following construction:
%
%     [b,a] = gammachirp(erbspacebw(flow,fhigh),fs,'complex');
%
%   To apply the (complex valued) filters to an input signal, use
%   FILTERBANKZ:
%
%   outsig = 2*real(ufilterbankz(b,a,insig));
%  
%   References:
%     T. Irino and R. D. Pattersion. A time-domain, level-dependent auditory
%     filter: The gammachirp. J. Acoust. Soc. Am., 101(412), 1997.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/common/gammachirp.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
  
%   AUTHOR : Toshio Irino, adapted for AMT by Clara Hollomey

% ------ Checking of input parameters ---------
  
if nargin<2
  error('%s: Too few input arguments.',upper(mfilename));
end;

if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
  error('%s: fs must be a positive scalar.',upper(mfilename));
end;

if ~isnumeric(fc) || ~isvector(fc) || any(fc<0) || any(fc>fs/2)
  error(['%s: fc must be a vector of positive values that are less than half ' ...
         'the sampling rate.'],upper(mfilename));
end;

definput.keyvals.n=4;
definput.keyvals.CoefERBw=1.019; % Default GammaTone value
ERB = ones(fc,1);
definput.keyvals.c=1;
definput.keyvals.phase=0;
definput.flags.carrier={'cos','sin','complex','envelope'};
definput.flags.norm={'no', 'peak'};

[flags,kv,n, c]  = ltfatarghelper({'n','c'},definput,varargin);

if ~isnumeric(n) || ~isscalar(n) || n<=0 || fix(n)~=n
  error('%s: n must be a positive, integer scalar.',upper(mfilename));
end

  b = exp(-2*pi*kv.CoefERBw*ERB(fc));

ERBrate = fc2erb(fc);
ERBw = f2erb(fc);

LenGC1kHz = (40*max(n)/max(kv.CoefERBw) + 200)*fs/16000;  % 2 Aug 96 
ERBw1kHz = f2erb(1000);	

if flags.do_sin kv.phase = kv.phase - pi/2*ones(1,length(fc)); end;
%%% Phase compensation
phase = kv.phase + c.*log(fc/1000); % relative phase to 1kHz

LenGC = fix(LenGC1kHz*ERBw1kHz./ERBw);

%%%%%  Production of GammaChirp  %%%%%
GC       = zeros(length(fc),max(LenGC));
if nargout > 2
 ERBwfc = f2erb(fc);
 fpeak = fc + c.*ERBwfc.*kv.CoefERBw./n; 
end

if nargout > 3, InstFreq = zeros(length(fc),max(LenGC));        end


for nch = 1:length(fc)
  
  t = (1:LenGC(nch)-1)/fs;

  GammaEnv = t.^(n(nch)-1).*exp(-2*pi*kv.CoefERBw(nch)*ERBw(nch)*t);
  GammaEnv = [ 0 GammaEnv/max(GammaEnv)];

  if flags.do_envelope
    carrier = ones(size(GammaEnv));
  elseif flags.do_complex
    carrier = [ 0 exp(1i * (2*pi*fc(nch)*t + c(nch)*log(t) +phase(nch)) )];
  else
    carrier = [ 0 cos(2*pi*fc(nch)*t + c(nch)*log(t) +phase(nch))];
  end;

  GC(nch,1:LenGC(nch)) = GammaEnv.*carrier;

  if nargout > 3, 
    InstFreq(nch,1:LenGC(nch)) = [0, [fc(nch) + c(nch)./(2*pi*t)]];
  end
  
  if flags.do_peak  % peak gain normalization
     [frsp, freq] = freqz(GC(nch,1:LenGC(nch)),1,LenGC(nch),SR);
     ERBwp = f2erb(fc(nch));
     fp = fc(nch) + c.*ERBwp.*kv.CoefERBw(nch)./n(nch);
     
     [~, np] = min(abs(freq-fp));
     GC(nch,:) = GC(nch,:)/abs(frsp(np));
  end;
  b = GC(nch, 1:LenGC(nch));
  a = 1;
end