This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [outsig,mfc,params] = modfilterbank(insig,fs,fc,varargin)
%MODFILTERBANK Modulation filter bank
% Usage: [outsig, mfc,params] = modfilterbank(insig,fs,fc);
%
% Input parameters:
% insig : Input signal(s)
% fs : Sampling rate in Hz,
% fc : Center frequencies of the input signals
%
% Output parameters:
% outsig : Modulation filtered signals
% mfc : Center frequencies of the modulation filters.
%
% MODFILTERBANK(insig,fs,fc) applies a modulation filterbank to the input
% signals insig which are sampled with a frequency of fs Hz. Each column in
% insig is assumed to be bandpass filtered with a center frequency stored in fc.
%
% By default, the modulation filters will have center frequencies
% 0,5,10,16.6,27.77,... where each next center frequency is 5/3 times the
% previous one. For modulation frequencies below (and including) 10 Hz,
% the real value of the filters are returned, and for higher modulation
% center frequencies, the absolute value (the envelope) is returned.
%
% References:
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. I. Detection and masking with narrow-band
% carriers. J. Acoust. Soc. Am., 102:2892--2905, 1997a.
%
% R. Fassel and D. Pueschel. Modulation detection and masking using
% deterministic and random maskers. Contributions to Psychological
% Acoustics, edited by A. Schick (Universitaetsgesellschaft Oldenburg,
% Oldenburg), pages 419--429, 1993.
%
% A. Kohlrausch, R. Fassel, and D. Torsten. The influence of carrier
% level and frequency on modulation and beat-detection thresholds for
% sinusoidal carriers. J. Acoust. Soc. Am., 108:723--734, 2000.
%
% J. Verhey, T. Dau, and B. Kollmeier. Within-channel cues in
% comodulation masking release (cmr): experiments and model predictions
% using a modulation-filterbank model. J. Acoust. Soc. Am.,
% 106:2733--2745, 1999.
%
% jepsen2008cmh
%
% See also: breebaart2001
%
% #Author: Stephan Ewert (1999-2004) and Morten L. Jepsen: Original version
% #Author: Peter L. Søndergaard (2009-2013): adapted to AMT
% #Author: Piotr Majdak (2013-): adapted to AMT 1.0
% #Author: Alejandro Osses (2020): extended with LP_150_Hz
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/common/modfilterbank.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
definput.keyvals.mfc=[];
definput.import = {'modfilterbank'};
[flags,kv]=ltfatarghelper({},definput,varargin);
if nargout >= 3
bStore_params = 1;
else
bStore_params = 0;
end
nfreqchannels=length(fc);
if nfreqchannels == 0
% This can be the case if the filter bank stage was by-passed, then:
nfreqchannels = size(insig,2);
fc = fs/2; % frequency that is high enough to ensure that all modfilters are assessed
end
Q = kv.Q_mfb; % Q = 2 is the default for this function
bw = 5;
ex=(1+1/(2*Q))/(1-1/(2*Q));
outsig=cell(nfreqchannels,1);
startmf = 5;
% second order modulation Butterworth lowpass filter with a cut-off frequency
% of 2.5 Hz.
[b_lowpass,a_lowpass] = butter(2,2.5/(fs/2));
if bStore_params
params.mfb_b(1,:) = b_lowpass;
params.mfb_a(1,:) = a_lowpass;
params.fs = fs;
params.description = ['Coefficients for all modulation filters used in ',mfilename,' obtained at fs=',fs];
amt_disp(params.description);
end
% first order modulation Butterworth lowpass filter with a cut-off
% frequency of 150 Hz. This is to remove all modulation frequencies
% above 150 Hz. The motivation behind this filter can be found in kohlrausch2000
if flags.do_LP_150_Hz || flags.do_LP_150_Hz_att
[b_lp_150_Hz,a_lp_150_Hz] = butter(1,150/(fs/2));
if bStore_params
params.b_lp_150_Hz = b_lp_150_Hz;
params.a_lp_150_Hz = a_lp_150_Hz;
end
end
% Set the highest modulation frequency as proportion of the corresponding
% center frequency. (see Verhey1999)
mfc_upper_limit_max = kv.mfc_upper_limit_max; % Hz
if flags.do_mfc_upper_limit
umf = min(fc.*0.25, mfc_upper_limit_max);
end
if flags.do_no_mfc_upper_limit
umf = mfc_upper_limit_max*ones(1,nfreqchannels);
end
if flags.do_att_factor
Factor = 1/sqrt(2); % This is according to Jepsen et al. (2008), page 426
end
if flags.do_no_att_factor
Factor = 1;
end
if flags.do_LP_150_Hz_att
K = 8192; % arbitrary number
f = (0:K-1)/K * fs/2;
hlpf = freqz(params.b_lp_150_Hz,params.a_lp_150_Hz, K); % frequency response of the 150 Hz filter
hlpf_dB = 20*log10(abs(hlpf));
end
for freqchannel=1:nfreqchannels
if flags.do_no_LP_150_Hz || flags.do_LP_150_Hz_att % this should be the default for dau1997a,b
outtmp = insig(:,freqchannel);
end
% Cut away highest modulation frequencies
if flags.do_LP_150_Hz
outtmp = filter(b_lp_150_Hz,a_lp_150_Hz,insig(:,freqchannel));
end
if umf(freqchannel)==0
% ----------- only lowpass ---------------------
outsigblock = filter(b_lowpass,a_lowpass,outtmp);
mfc = 0;
else
tmp = fix((min(umf(freqchannel),10) - startmf)/bw);
tmp = 0:tmp;
mfc = startmf + 5*tmp;
tmp2 = (mfc(end)+bw/2)/(1-1/(2*Q));
tmp = fix(log(umf(freqchannel)/tmp2)/log(ex));
tmp = 0:tmp;
tmp = ex.^tmp;
mfc=[0 mfc tmp2*tmp];
% --------- lowpass and modulation filter(s) ---
outsigblock = zeros(length(insig),length(mfc));
outsigblock(:,1) = filter(b_lowpass,a_lowpass,outtmp);
if flags.do_LP_150_Hz_att
mfc_gains = interp1(f(:)',hlpf_dB(:)',mfc);
end
for nmfc=2:length(mfc)
w0 = 2*pi*mfc(nmfc)/fs;
if mfc(nmfc) < 10
[b3,a3] = efilt(w0,2*pi*bw/fs);
else
[b3,a3] = efilt(w0,w0/Q);
end
if bStore_params
params.mfb_b(nmfc,1:length(b3)) = b3;
params.mfb_a(nmfc,1:length(a3)) = a3;
end
outsigblock(:,nmfc) = 2*filter(b3,a3,outtmp); % emphasis of 6 dB
if flags.do_LP_150_Hz_att
outsigblock(:,nmfc) = scaletodbspl( outsigblock(:,nmfc), mfc_gains(nmfc));
end
end
end
%% ------------ post-processing --------------------
% If enabled, the phase information for modulation filters with mfc below
% or equal to 10 Hz is kept, and above 10 Hz the envelope is assessed.
if flags.do_phase_insens_hilbert
for nmfc=1:length(mfc) % v2 MJ 17. oct 2006
if mfc(nmfc) <= 10
outsigblock(:,nmfc) = 1*real(outsigblock(:,nmfc));
else
outsigblock(:,nmfc) = Factor*abs(outsigblock(:,nmfc));
end
end
end
% If disabled, the bandpassed signals are returned:
if flags.do_no_phase_insens
outsigblock(:,2:end) = outsigblock(:,2:end)/2; % this factor of 2 is to
% to comensate for the gain of 2 in Line L149: 'outsigblock(:,nmfc) = 2*filter(b3,a3,outtmp);'
% which is applied to all modulation bandpass filters (excluding the first
% LPF)
end
outsig{freqchannel}=outsigblock;
end;
%% ------------ subfunctions ------------------------
% complex frequency shifted first order lowpass
function [b,a] = efilt(w0,bw);
e0 = exp(-bw/2);
b = 1 - e0;
a = [1, -e0*exp(1i*w0)];