data = exp_baumgartner2021(flag)
exp_baumgartner2021(flag) reproduces figures of the study from Baumgartner and Majdak (2021).
The following flags can be specified
- fig2 shows cue-specific predictions, sensitivities, prediction errors,
- and optimal relative weights in order to best explain the actual externalization ratings. Oracle: prediction errors obtained with the oracle model.
- fig3 displays the prediction errors for all decision strategies,
- optimal cue weights and results for paired combinations.
- hartmann1996 models experiments from Hartmann & Wittenberg (1996; Fig.7-8)
- 1st panel: Synthesis of zero-ILD signals. Only the harmonics from 1 to nprime had zero interaural level difference; harmonics above nprime retained the amplitudes of the baseline synthesis. Externalization scores as a function of the boundary harmonic number nprime. Fundamental frequency of 125 Hz. 2nd panel: Synthesis of signals to test the ISLD hypothesis. Harmonics at and below the boundary retained only the interaural spectral level differences of the baseline synthesis. Higher harmonics retained left and right baseline harmonic levels. Externalization scores as a function of the boundary frequency.
- hassager2016 models experiments from Hassager et al. (2016; Fig.6).
- The mean of the seven listeners perceived sound source location (black) as a function of the bandwidth factor and the corresponding model predictions (colored). The model predictions have been shifted slightly to the right for a better visual interpretation. The error bars are one standard error of the mean.
- baumgartner2017 models experiments from Baumgartner et al. (2017).
- Effect of HRTF spectral contrast manipulations on sound externalization. Externalization scores were derived from paired comparisons via Bradley-Terry-Luce modeling.
- boyd2012 models experiments from Boyd et al. (2012; Fig.1, top).
- Average externalization ratings of 1 talker for NH participants against mix point as a function of microphone position (ITE/BTE) and frequency response (BB/LP). The reference condition (ref) is the same as ITE/BB. Error bars show SEM.
To display indivdual predictions for all experiments use
exp_baumgartner2021('fig2');
This code produces the following output:
hartmann1996, Exp. 1 Showing modelling details for hartmann1996_exp1 S_cue Error Weight Description _________ _________ _______ ______________________________________________________________________________________ MSS 0.073828 0.081818 0 'Monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISS 0.88369 0.011274 0 'Interaural spectral shape (c.f., Hassager et al., 2016)' MSSD 0.021484 0.042295 0 'Spectral SD of monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISSD 0.62119 0.052943 0 'Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)' ITIT 0.79141 0.0035124 0.69234 'Interaural time-intensity trading (ITD vs. ILD)' IC 0.0083008 0.0047487 0.18995 'Interaural coherence (c.f., Hassager et al., 2017)' MI 0.0038086 0.012103 0.11771 'Monaural intensity difference (target - reference)' Oracle NaN 0.0038405 NaN 'Weighted combination' Showing cue contributions for hartmann1996_exp1 MSS ISS MSSD ISSD ITIT IC MI Error_Oracle Error_WSM Error_LTA Error_MTA Error_WTA BIC_Oracle BIC_WSM BIC_LTA BIC_MTA BIC_WTA ________ ___ ________ ____ _______ _______ _______ ____________ _________ _________ _________ _________ __________ ________ _______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.071595 0 0.084639 0 0.13799 0.58691 0.11886 0.0060689 0.023193 0.016062 0.027608 0.022957 -2.9907 3.7126 -9.3905 -6.6822 -7.6045 MSS, ISS, MSSD, ISSD, ITIT, IC 0 0 0.26045 0 0.11771 0.62184 NaN 0.0057589 0.020118 0.0084312 0.010345 0.010972 -6.4718 -0.21745 -14.222 -13.2 -12.905 MSS, ISS, ISSD, ITIT, IC 0.21613 0 NaN 0 0.1357 0.64817 NaN 0.008223 0.023686 0.026913 0.04029 0.049354 -7.9097 -2.62 -10.028 -8.011 -6.9965 MSS, ISS, ISSD, ITIT 0.46307 0 NaN 0 0.53693 NaN NaN 0.017392 0.029709 0.007816 0.010933 0.02827 -7.3832 -4.706 -17.82 -16.142 -11.392 MSS, ISSD, ITIT 0.46315 NaN NaN 0 0.53685 NaN NaN 0.017392 0.031557 0.0065232 0.027969 0.036925 -10.602 -7.6232 -20.334 -13.055 -11.666 MSS, ITIT 0.46309 NaN NaN NaN 0.53691 NaN NaN 0.017392 0.034445 0.0035632 0.010957 0.018707 -13.821 -10.404 -24.967 -19.35 -16.675 MSS 1 NaN NaN NaN NaN NaN NaN 0.091699 0.091699 0.081818 0.081818 0.081818 -8.7273 -8.7273 -10.907 -10.907 -10.907 hartmann1996, Exp. 2 Showing modelling details for hartmann1996_exp2 S_cue Error Weight Description __________ __________ ________ ______________________________________________________________________________________ MSS 0.12051 0.0019367 0.019309 'Monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISS 0.00019531 0.063476 0 'Interaural spectral shape (c.f., Hassager et al., 2016)' MSSD 0.019629 0.010901 0.34659 'Spectral SD of monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISSD 0.0069336 0.017217 0.032649 'Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)' ITIT 0.00078125 0.0035481 0.4388 'Interaural time-intensity trading (ITD vs. ILD)' IC 0.0012695 0.0049122 0.16266 'Interaural coherence (c.f., Hassager et al., 2017)' MI 4.8828e-05 0.04627 0 'Monaural intensity difference (target - reference)' Oracle NaN 0.00029003 NaN 'Weighted combination' Showing cue contributions for hartmann1996_exp2 MSS ISS MSSD ISSD ITIT IC MI Error_Oracle Error_WSM Error_LTA Error_MTA Error_WTA BIC_Oracle BIC_WSM BIC_LTA BIC_MTA BIC_WTA _______ ___ ______ _______ ____ ________ ________ ____________ _________ __________ _________ _________ __________ ________ _______ _______ ________ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.66081 0 0.2029 0 0 0.093239 0.043051 0.016603 0.068566 0.010188 0.013991 0.22396 3.0155 8.6883 -8.6419 -7.3733 3.719 MSS, ISS, MSSD, ISSD, ITIT, IC 0.87483 0 0 0 0 0.12517 NaN 0.0056494 0.065774 0.0018328 0.002641 0.17217 -4.0693 5.7494 -16.89 -15.429 1.2807 MSS, ISS, ISSD, ITIT, IC 0.80456 0 NaN 0.19544 0 0 NaN 0.013594 0.066128 0.0001728 0.0038704 0.2513 -3.3296 2.9983 -27.722 -15.286 1.4071 MSS, ISS, ISSD, ITIT 1 0 NaN 0 0 NaN NaN 0.0026579 0.056353 5.5574e-09 0.017156 0.20467 -12.63 -0.41409 -70.487 -10.716 -0.80029 MSS, ISSD, ITIT 1 NaN NaN 0 0 NaN NaN 0.0026579 0.030535 0.0013744 0.0017853 0.035254 -15.403 -5.6378 -22.2 -21.154 -9.2218 MSS, ITIT 1 NaN NaN NaN 0 NaN NaN 0.0026579 0.024436 0.0015726 0.0013143 0.0035481 -18.176 -9.3016 -23.047 -23.765 -19.793 MSS 1 NaN NaN NaN NaN NaN NaN 0.0026579 0.0026579 0.0019367 0.0019367 0.0019367 -20.948 -20.948 -23.601 -23.601 -23.601 hassager2016 Showing modelling details for hassager2016 S_cue Error Weight Description _________ _________ ________ ______________________________________________________________________________________ MSS 0.2293 0.0053458 0.57534 'Monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISS 0.33135 0.0047244 0.36112 'Interaural spectral shape (c.f., Hassager et al., 2016)' MSSD 0.12402 0.088551 0 'Spectral SD of monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISSD 0.15986 0.025814 0.025209 'Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)' ITIT 0.14082 0.035836 0.038331 'Interaural time-intensity trading (ITD vs. ILD)' IC 0.035156 0.13813 0 'Interaural coherence (c.f., Hassager et al., 2017)' MI 0.0003418 0.19711 0 'Monaural intensity difference (target - reference)' Oracle NaN 0.0028219 NaN 'Weighted combination' Showing cue contributions for hassager2016 MSS ISS MSSD ISSD ITIT IC MI Error_Oracle Error_WSM Error_LTA Error_MTA Error_WTA BIC_Oracle BIC_WSM BIC_LTA BIC_MTA BIC_WTA _______ _______ ____ ________ _______ ___ ___ ____________ _________ _________ _________ _________ __________ _______ _______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.39849 0.40698 0 0.085589 0.10894 0 0 0.0032588 0.016475 0.0066971 0.011033 0.20723 -82.706 -47.056 -88.496 -77.513 -12.989 MSS, ISS, MSSD, ISSD, ITIT, IC 0.29948 0.60597 0 0.076443 0.01811 0 NaN 0.0029749 0.024953 0.0039253 0.0081372 0.077533 -90.893 -44.104 -103.34 -87.303 -37.709 MSS, ISS, ISSD, ITIT, IC 0.26084 0.64136 NaN 0.097809 0 0 NaN 0.0029383 0.015921 0.0035608 0.002736 0.072175 -97.348 -60.173 -108.58 -114.37 -42.375 MSS, ISS, ISSD, ITIT 0.26542 0.64531 NaN 0.089275 0 NaN NaN 0.0029362 0.0042859 0.0029754 0.0026254 0.051861 -103.55 -95.225 -115.62 -118.37 -52.738 MSS, ISSD, ITIT 0.64931 NaN NaN 0 0.35069 NaN NaN 0.0042231 0.0047078 0.0084647 0.0037099 0.038776 -101.73 -99.341 -95.708 -113.86 -62.226 MSS, ITIT 0.64936 NaN NaN NaN 0.35064 NaN NaN 0.0042231 0.0049458 0.0029154 0.0060224 0.038461 -107.91 -104.44 -122.25 -106.29 -65.496 MSS 1 NaN NaN NaN NaN NaN NaN 0.021879 0.021879 0.0053458 0.0053458 0.0053458 -77.907 -77.907 -112 -112 -112 baumgartner2017 Showing modelling details for baumgartner2017 S_cue Error Weight Description ________ ________ _______ ______________________________________________________________________________________ MSS 0.087988 0.036517 0.56054 'Monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISS 0.4207 0.081148 0 'Interaural spectral shape (c.f., Hassager et al., 2016)' MSSD 0.39395 0.036857 0.10583 'Spectral SD of monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISSD 0.50117 0.051565 0 'Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)' ITIT 0.022559 0.13844 0 'Interaural time-intensity trading (ITD vs. ILD)' IC 0.018164 0.062149 0.33363 'Interaural coherence (c.f., Hassager et al., 2017)' MI 0.11279 0.12654 0 'Monaural intensity difference (target - reference)' Oracle NaN 0.023715 NaN 'Weighted combination' Showing cue contributions for baumgartner2017 MSS ISS MSSD ISSD ITIT IC MI Error_Oracle Error_WSM Error_LTA Error_MTA Error_WTA BIC_Oracle BIC_WSM BIC_LTA BIC_MTA BIC_WTA _______ _________ ____ _________ ________ ________ ___ ____________ _________ _________ _________ _________ __________ ________ _________ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.64838 0.012149 0 0.24297 0.020725 0.075782 0 0.031103 0.039787 0.076446 0.028399 0.14665 4.9692 5.7079 -0.023211 -2.9939 1.9311 MSS, ISS, MSSD, ISSD, ITIT, IC 0.60633 0.0081455 0 0 0 0.38552 NaN 0.025641 0.036983 0.025604 0.027244 0.1235 2.1926 3.2915 -4.4033 -4.217 0.31718 MSS, ISS, ISSD, ITIT, IC 0.66296 0 NaN 0.0054617 0 0.33157 NaN 0.025251 0.035843 0.048979 0.018166 0.11406 -0.05053 1.0003 -3.556 -6.5316 -1.02 MSS, ISS, ISSD, ITIT 0.77099 0 NaN 0.22901 0 NaN NaN 0.031347 0.047592 0.051862 0.029359 0.14939 -1.599 -0.34634 -4.4831 -6.19 -1.3092 MSS, ISSD, ITIT 0.77103 NaN NaN 0.22897 0 NaN NaN 0.031347 0.068016 0.032103 0.032686 0.12457 -3.7963 -1.4724 -7.0206 -6.9666 -2.9528 MSS, ITIT 1 NaN NaN NaN 0 NaN NaN 0.045874 0.075326 0.030911 0.048796 0.13084 -4.8511 -3.3633 -8.2327 -6.8631 -3.9041 MSS 1 NaN NaN NaN NaN NaN NaN 0.045874 0.045874 0.036517 0.036517 0.036517 -7.0484 -7.0484 -8.8313 -8.8313 -8.8313 boyd2012 Showing modelling details for boyd2012 S_cue Error Weight Description ________ ________ _______ ______________________________________________________________________________________ MSS 0.18057 0.042443 0.24038 'Monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISS 0.44687 0.028343 0.30127 'Interaural spectral shape (c.f., Hassager et al., 2016)' MSSD 0.054395 0.10339 0 'Spectral SD of monaural positive spectral gradients (c.f., Baumgartner et al., 2014)' ISSD 0.24404 0.032469 0 'Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)' ITIT 0.54668 0.040747 0 'Interaural time-intensity trading (ITD vs. ILD)' IC 0.36709 0.050289 0.30942 'Interaural coherence (c.f., Hassager et al., 2017)' MI 0.15518 0.082215 0.14893 'Monaural intensity difference (target - reference)' Oracle NaN 0.01466 NaN 'Weighted combination' Showing cue contributions for boyd2012 MSS ISS MSSD ISSD ITIT IC MI Error_Oracle Error_WSM Error_LTA Error_MTA Error_WTA BIC_Oracle BIC_WSM BIC_LTA BIC_MTA BIC_WTA _______ _______ _______ ____ ________ ___ ___ ____________ _________ _________ _________ _________ __________ _______ _______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.20981 0.63629 0.11231 0 0.041592 0 0 0.024676 0.04091 0.22043 0.029526 0.070926 -32.098 -21.987 -9.2732 -49.479 -31.952 MSS, ISS, MSSD, ISSD, ITIT, IC 0.18965 0.63326 0.13451 0 0.042584 0 NaN 0.024621 0.043919 0.028489 0.063165 0.092708 -38.134 -26.559 -53.19 -37.266 -29.592 MSS, ISS, ISSD, ITIT, IC 0.24005 0.68964 NaN 0 0.070312 0 NaN 0.026501 0.043818 0.032461 0.02756 0.055326 -42.654 -32.597 -53.576 -56.849 -42.912 MSS, ISS, ISSD, ITIT 0.23999 0.69008 NaN 0 0.06993 NaN NaN 0.026501 0.032026 0.059887 0.024031 0.044368 -48.645 -44.858 -44.323 -62.586 -50.322 MSS, ISSD, ITIT 0.48914 NaN NaN 0 0.51086 NaN NaN 0.033391 0.036857 0.02862 0.0302 0.046264 -50.015 -48.04 -62.086 -61.011 -52.48 MSS, ITIT 0.48905 NaN NaN NaN 0.51095 NaN NaN 0.033391 0.037232 0.02924 0.026657 0.04717 -56.007 -53.829 -64.653 -66.502 -55.089 MSS 1 NaN NaN NaN NaN NaN NaN 0.052145 0.052145 0.042443 0.042443 0.042443 -53.083 -53.083 -60.196 -60.196 -60.196
To display results for different decision strategies use
exp_baumgartner2021('fig3');
This code produces the following output:
Prediciton errors for tested decisions: RMSE_WSM RMSE_LTA RMSE_MTA RMSE_WTA BIC_WSM BIC_LTA BIC_MTA BIC_WTA ________ ________ ________ ________ _______ _______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.11786 0.26976 0.18126 0.44556 -175.09 -113.58 -156.52 -59.386 MSS, ISS, MSSD, ISSD, ITIT, IC 0.11746 0.25919 0.17442 0.34271 -183.43 -121.89 -164.66 -91.72 MSS, ISS, ISSD, ITIT, IC 0.11746 0.25839 0.15922 0.28616 -191.41 -126.21 -178.5 -115.19 MSS, ISS, ISSD, ITIT 0.11746 0.26063 0.16057 0.21795 -199.39 -129.27 -181.58 -148.58 MSS, ISSD, ITIT 0.1253 0.27192 0.18598 0.21488 -200.39 -128.68 -169.7 -154.1 MSS, ITIT 0.13732 0.28134 0.18255 0.20226 -198.47 -128.99 -175.7 -164.63 MSS 0.1456 0.1456 0.1456 0.1456 -200.12 -204.11 -204.11 -204.11 WSM weights/percentages MSS ISS MSSD ISSD ITIT IC MI RMSE BIC _______ _______ ____ ________ _________ ___ ________ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 0.59174 0.30018 0 0.055064 0.026457 0 0.026563 0.11786 -175.09 MSS, ISS, MSSD, ISSD, ITIT, IC 0.59433 0.32884 0 0.069708 0.0071173 0 NaN 0.11746 -183.43 MSS, ISS, ISSD, ITIT, IC 0.59443 0.32873 NaN 0.069721 0.0071216 0 NaN 0.11746 -191.41 MSS, ISS, ISSD, ITIT 0.59436 0.32883 NaN 0.069703 0.0071109 NaN NaN 0.11746 -199.39 MSS, ISSD, ITIT 0.70682 NaN NaN 0.25484 0.038333 NaN NaN 0.1253 -200.39 MSS, ITIT 0.85482 NaN NaN NaN 0.14518 NaN NaN 0.13732 -198.47 MSS 1 NaN NaN NaN NaN NaN NaN 0.1456 -200.12 LTA weights/percentages MSS ISS MSSD ISSD ITIT IC MI RMSE BIC ______ ______ ______ ______ ______ ______ ______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 16.667 20.37 1.8519 7.4074 37.037 12.963 3.7037 0.26976 -113.58 MSS, ISS, MSSD, ISSD, ITIT, IC 12.963 22.222 5.5556 5.5556 40.741 12.963 NaN 0.25919 -121.89 MSS, ISS, ISSD, ITIT, IC 12.963 31.481 NaN 9.2593 31.481 14.815 NaN 0.25839 -126.21 MSS, ISS, ISSD, ITIT 12.963 25.926 NaN 12.963 48.148 NaN NaN 0.26063 -129.27 MSS, ISSD, ITIT 20.37 NaN NaN 16.667 62.963 NaN NaN 0.27192 -128.68 MSS, ITIT 33.333 NaN NaN NaN 66.667 NaN NaN 0.28134 -128.99 MSS 100 NaN NaN NaN NaN NaN NaN 0.1456 -204.11 MTA weights/percentages MSS ISS MSSD ISSD ITIT IC MI RMSE BIC ______ ______ ______ ______ ______ ______ ______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 33.333 12.963 9.2593 20.37 9.2593 11.111 3.7037 0.18126 -156.52 MSS, ISS, MSSD, ISSD, ITIT, IC 31.481 12.963 16.667 31.481 3.7037 3.7037 NaN 0.17442 -164.66 MSS, ISS, ISSD, ITIT, IC 27.778 16.667 NaN 25.926 16.667 12.963 NaN 0.15922 -178.5 MSS, ISS, ISSD, ITIT 40.741 29.63 NaN 22.222 7.4074 NaN NaN 0.16057 -181.58 MSS, ISSD, ITIT 33.333 NaN NaN 50 16.667 NaN NaN 0.18598 -169.7 MSS, ITIT 87.037 NaN NaN NaN 12.963 NaN NaN 0.18255 -175.7 MSS 100 NaN NaN NaN NaN NaN NaN 0.1456 -204.11 WTA weights/percentages MSS ISS MSSD ISSD ITIT IC MI RMSE BIC ______ ______ ______ ______ ______ ______ ______ _______ _______ MSS, ISS, MSSD, ISSD, ITIT, IC, MI 25.926 3.7037 9.2593 3.7037 3.7037 7.4074 46.296 0.44556 -59.386 MSS, ISS, MSSD, ISSD, ITIT, IC 20.37 3.7037 33.333 0 7.4074 35.185 NaN 0.34271 -91.72 MSS, ISS, ISSD, ITIT, IC 31.481 12.963 NaN 14.815 12.963 27.778 NaN 0.28616 -115.19 MSS, ISS, ISSD, ITIT 55.556 14.815 NaN 16.667 12.963 NaN NaN 0.21795 -148.58 MSS, ISSD, ITIT 61.111 NaN NaN 27.778 11.111 NaN NaN 0.21488 -154.1 MSS, ITIT 75.926 NaN NaN NaN 24.074 NaN NaN 0.20226 -164.63 MSS 100 NaN NaN NaN NaN NaN NaN 0.1456 -204.11 Contributions and Prediction errors: MSS ISS MSSD ISSD ITIT IC MI WSM_RMSE CI_low CI_high _______ _______ ________ _______ ________ ________ ________ ________ ________ _______ 0.59938 0.40062 NaN NaN NaN NaN NaN 0.11809 0.095138 0.15122 0.71892 NaN NaN 0.28108 NaN NaN NaN 0.12576 0.10422 0.15793 0.85482 NaN NaN NaN 0.14518 NaN NaN 0.13732 0.10948 0.1766 0.92907 NaN NaN NaN NaN NaN 0.07093 0.14268 0.10912 0.20868 0.94641 NaN NaN NaN NaN 0.053586 NaN 0.14426 0.11123 0.19873 0.95871 NaN 0.041292 NaN NaN NaN NaN 0.14507 0.11242 0.20648 NaN 0.82733 0.17267 NaN NaN NaN NaN 0.16374 0.11605 0.24185 NaN 0.89015 NaN NaN NaN 0.10985 NaN 0.16868 0.11486 0.25048 NaN 0.90091 NaN NaN NaN NaN 0.099093 0.16892 0.11857 0.24599 NaN 0.92248 NaN NaN 0.077521 NaN NaN 0.17229 0.12508 0.2655 NaN 0.8758 NaN 0.1242 NaN NaN NaN 0.1725 0.11671 0.24754 NaN NaN NaN 0.78507 0.21493 NaN NaN 0.21693 0.17414 0.28489 NaN NaN 0.20616 0.79384 NaN NaN NaN 0.21723 0.17219 0.27164 NaN NaN NaN 0.87082 NaN 0.12918 NaN 0.22133 0.17412 0.28127 NaN NaN NaN 0.92823 NaN NaN 0.071767 0.22439 0.17918 0.28468 NaN NaN 0.48886 NaN 0.51114 NaN NaN 0.23711 0.19133 0.30087 NaN NaN NaN NaN 0.61174 0.38826 NaN 0.26809 0.212 0.34092 NaN NaN NaN NaN 0.64537 NaN 0.35463 0.26855 0.21229 0.32877 NaN NaN 0.59676 NaN NaN 0.40324 NaN 0.2692 0.22905 0.32112 NaN NaN 0.69367 NaN NaN NaN 0.30633 0.29922 0.25709 0.34991 NaN NaN NaN NaN NaN 0.73255 0.26745 0.37218 0.29163 0.44536 Sensitivities: MSS ISS MSSD ISSD ITIT IC MI _______ _______ ________ _______ _______ _______ _______ 0.20029 0.51084 NaN NaN NaN NaN NaN 0.20029 NaN NaN 0.24854 NaN NaN NaN 0.20029 NaN NaN NaN 0.49307 NaN NaN 0.20029 NaN NaN NaN NaN NaN 0.14482 0.20029 NaN NaN NaN NaN 0.33066 NaN 0.20029 NaN 0.080273 NaN NaN NaN NaN NaN 0.51084 0.080273 NaN NaN NaN NaN NaN 0.51084 NaN NaN NaN 0.33066 NaN NaN 0.51084 NaN NaN NaN NaN 0.14482 NaN 0.51084 NaN NaN 0.49307 NaN NaN NaN 0.51084 NaN 0.24854 NaN NaN NaN NaN NaN NaN 0.24854 0.49307 NaN NaN NaN NaN 0.080273 0.24854 NaN NaN NaN NaN NaN NaN 0.24854 NaN 0.33066 NaN NaN NaN NaN 0.24854 NaN NaN 0.14482 NaN NaN 0.080273 NaN 0.49307 NaN NaN NaN NaN NaN NaN 0.49307 0.33066 NaN NaN NaN NaN NaN 0.49307 NaN 0.14482 NaN NaN 0.080273 NaN NaN 0.33066 NaN NaN NaN 0.080273 NaN NaN NaN 0.14482 NaN NaN NaN NaN NaN 0.33066 0.14482
A. W. Boyd, W. M. Whitmer, J. J. Soraghan, and M. A. Akeroyd. Auditory externalization in hearing-impaired listeners: The effect of pinna cues and number of talkers. J. Acoust. Soc. Am., 131(3):EL268--EL274, 2012. [ DOI | arXiv | www: ]
W. M. Hartmann and A. Wittenberg. On the externalization of sound images. J. Acoust. Soc. Am., 99(6):3678--88, June 1996. [ http ]
H. G. Hassager, F. Gran, and T. Dau. The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment. J. Acoust. Soc. Am., 139(5):2992--3000, 2016. [ DOI | arXiv | www: ]