function exp_mckenzie2021(varargin)
%EXP_MCKENZIE2021 experiments from McKenzie et al
%
% Usage:
% exp_mckenzie2021('fig10d'); % (to plot Figure 10 d).
% exp_mckenzie2021('fig10a'); % (to plot Figure 10 a).
%
% Reproduces the plots in the listening test section (Figure 10a-d) in the
% Acta Acustica paper: McKenzie, T., Armstrong, C., Ward, L., Murphy, D. T.,
% & Kearney, G. (2021). A Perceptually Motivated Spectral Difference Model
% for Binaural Signals. Acta Acustica (in review).
%
% Read in perceptual listening test results and compare correlation of
% median results to spectral difference values between the reference and
% test stimuli. The listening test results are from the following paper:
% McKenzie, T., Murphy, D. T., & Kearney, G. C. (2018). Diffuse-Field
% Equalisation of Binaural Ambisonic Rendering. Applied Sciences, 8(10).
% https://doi.org/10.3390/app8101956
% The test compares binaural Ambisonic sounds with and without
% diffuse-field equalisation to HRTF convolution sounds.
%
% PEAQ and CLL are commented out in this script so that it runs without any
% additional files necessary. To produce the respective data, download the
% PEAQ and CLL code:
% https://github.com/NikolajAndersson/PEAQ and
% www.acoustics.hut.fi/-301ville/software/auditorymodel/.
% The test sounds (ts.... etc) must be saved as wav files to work with the
% PEAQ model.
%
% Examples:
% ---------
%
% To display Figure 10a use :
%
% exp_mckenzie2021('fig10a');
%
% To display Figure 10d use :
%
% exp_mckenzie2021('fig10d');
%
% Authors:
% Thomas McKenzie, Cal Armstrong, Lauren Ward, Damian Murphy, Gavin Kearney
% Correspondence to thomas.mckenzie@aalto.fi (happy to answer any questions
% if you're having trouble!)
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/experiments/exp_mckenzie2021.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
definput.flags.type={'missingflag','fig10a', 'fig10b', 'fig10c', 'fig10d'};
[flags,keyvals] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end
%% Read in listening test stimuli
data = amt_load('mckenzie2021', 'sig_mckenzie2021.mat');
fs = data.fs;
rsH = data.rsH;
testDirections = data.testDirections;
tsA1 = data.tsA1;
tsA3 = data.tsA3;
tsA5 = data.tsA5;
tsD1 = data.tsD1;
tsD3 = data.tsD3;
tsD5 = data.tsD5;
% combine stimuli into one matrix
ts = cat(3,tsA1,tsA3,tsA5,tsD1,tsD3,tsD5);
rs = cat(3,rsH,rsH,rsH,rsH,rsH,rsH);
tsP = permute(ts,[1 3 2]);
rsP = permute(rs,[1 3 2]);
%% Read in listening test results
data = amt_load('mckenzie2021', 'data_mckenzie2021.mat', 'data_subs');
% arrange results from repeated stimuli
resultsRaw(:,:,1) = [data.data_subs.Scen1 ; data.data_subs.Scen9];
resultsRaw(:,:,2) = [data.data_subs.Scen2 ; data.data_subs.Scen10];
resultsRaw(:,:,3) = [data.data_subs.Scen3 ; data.data_subs.Scen11];
resultsRaw(:,:,4) = [data.data_subs.Scen4 ; data.data_subs.Scen12];
resultsRaw(:,:,5) = [data.data_subs.Scen5 ; data.data_subs.Scen13];
resultsRaw(:,:,6) = [data.data_subs.Scen6 ; data.data_subs.Scen14];
resultsRaw(:,:,7) = [data.data_subs.Scen7 ; data.data_subs.Scen15];
resultsRaw(:,:,8) = [data.data_subs.Scen8 ; data.data_subs.Scen16];
% concatenate test results and order them
listTestResultsMedian = round(squeeze(median(resultsRaw))');
listTestResults = [listTestResultsMedian(:,4,:);listTestResultsMedian(:,6,:);listTestResultsMedian(:,8,:);listTestResultsMedian(:,5,:);listTestResultsMedian(:,7,:);listTestResultsMedian(:,9,:)];
%% Run spectral difference calculations
% parameters
freqRange = [20 20000]; nfft = length(rs(:,1,1));
%switch figureNumber
if flags.do_fig10a
% BASIC SPECTRAL DIFFERENCE
tsF = fftMatrix(tsP, fs, nfft, freqRange);
rsF = fftMatrix(rsP, fs, nfft, freqRange);
% get single values of spectral difference for all stimuli
BSpecDiff = squeeze(mean(abs(tsF-rsF)));
BavgSpecDiffS = mean(BSpecDiff,2);
elseif flags.do_fig10b
amt_disp('perceptual evaluation of audio quality not implemented.');
% % PERCEPTUAL EVALUATION OF AUDIO QUALITY
% for i = 1:length(testDirectory)
% [odg_tsA1(i), movb_tsA1(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_1__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsA3(i), movb_tsA3(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_3__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsA5(i), movb_tsA5(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_5__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD1(i), movb_tsD1(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_1__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD3(i), movb_tsD3(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_3__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD5(i), movb_tsD5(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_5__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% end
%
% % get single values of spectral difference for all stimuli
% QavgSpecDiffS = [odg_tsA1 odg_tsA3 odg_tsA5 odg_tsD1 odg_tsD3 odg_tsD5]';
%
elseif flags.do_fig10c
amt_disp('composite loudness level not implemented.');
% % COMPOSITE LOUDNESS LEVEL
% for i = 1:length(tsP(1,:,1))
% CLL_difference(i,:) = CLL(tsP(:,i,:),rsP(:,i,:),fs);
% end
% % get single values of spectral difference for all stimuli
% CavgSpecDiffS = mean(abs(CLL_difference),2);
%
elseif flags.do_fig10d
% PERCEPTUAL SPECTRAL DIFFERENCE
f.fs = fs;f.nfft = nfft;f.minFreq = freqRange(1); f.maxFreq = freqRange(2);
[~,PSpecDiff] = mckenzie2021(tsP,rsP,0,f,0); %no fft pre model
PSpecDiff = squeeze(PSpecDiff);
% get single values of spectral difference for all stimuli
PavgSpecDiffS = mean(PSpecDiff,2);
end
%% Calculate Pearson's Correlation Coefficient
% between spectral difference values and perceptual listening test results
%switch figureNumber
if flags.do_fig10a
[rbsd, pbsd] = corrcoef(BavgSpecDiffS,listTestResults);
disp(strcat('BSD correlation=',num2str(rbsd(2,1)),', p=',num2str(pbsd(2,1))));
% case 'fig10b'
% [rqsd, pqsd] = corrcoef(QavgSpecDiffS,listTestResults);
% disp(strcat('PEAQ correlation = ',num2str(rqsd(2,1)),', p = ',num2str(pqsd(2,1))));
%
% case 'fig10c'
% [rcsd, pcsd] = corrcoef(CavgSpecDiffS,listTestResults);
% disp(strcat('CLL correlation = ',num2str(rcsd(2,1)),', p = ',num2str(pcsd(2,1))));
elseif flags.do_fig10d
[rpsd, ppsd] = corrcoef(PavgSpecDiffS,listTestResults);
disp(strcat('PSD correlation=',num2str(rpsd(2,1)),', p=',num2str(ppsd(2,1))));
end
%% Plot PCC vs Listening Test Results
%switch figureNumber
if flags.do_fig10a
h = figure; scatter(listTestResults,BavgSpecDiffS,60,'x','LineWidth',1.5,'MarkerEdgeColor','k');
ylabel('BSD (dB)'); xlabel('Median Results');
set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
pbaspect([1.7 1 1]); grid on; box on;
% saveFig(h,'bsd_dfe.pdf',2)
% case 'fig10b'
% h = figure; scatter(listTestResults,QavgSpecDiffS,60,'x','LineWidth',1.5,'MarkerEdgeColor','k');
% ylabel('PEAQ (ODG)'); xlabel('Median Results');
% set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
% pbaspect([1.7 1 1]); grid on; box on;
% % saveFig(h,'qsd_dfe.pdf',2)
%
% case 'fig10c'
% h = figure; scatter(listTestResults,CavgSpecDiffS,60,'x','LineWidth',1.5,'MarkerEdgeColor','k');
% ylabel('CLL (dB)'); xlabel('Median Results');
% set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
% pbaspect([1.7 1 1]); grid on; box on;
% % saveFig(h,'csd_dfe.pdf',2)
elseif flags.do_fig10d
h = figure; scatter(listTestResults,PavgSpecDiffS,70,'x','LineWidth',1.5,'MarkerEdgeColor','k');
ylabel('PSD (sones)'); xlabel('Median Results');
set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
pbaspect([1.7 1 1]); grid on; box on;
% saveFig(h,'psd_dfe.pdf',2)
end
%% Extra functions
function [matrix_output_fft, freq_vector_fft,fft_abs_matrix_input] = fftMatrix(matrix_input, Fs, Nfft, freq_range)
% Function to calculate the single sided frequency spectrum of two matrices
% of HRIRs for a specified frequency range. Returns FFT of input matrix as
% the absolute FFT in dB for the specified frequency range with the
% associated frequency vector.
% Take FFT of matrices
fft_matrix_input = fft(matrix_input, Nfft); % Get Fast Fourier transform
% Compute freq bins for x-axis limits
fr_low = round(freq_range(1)*Nfft/Fs);
fr_high = round(freq_range(2)*Nfft/Fs);
% Get absolute values for frequency bins
fft_abs_matrix_input = abs(fft_matrix_input(fr_low:fr_high,:,:));
% Get values in dB
matrix_output_fft = 20*log10(fft_abs_matrix_input);
% Frequency vector for plotting
f = 0:Fs/Nfft:Fs-(Fs/Nfft);
freq_vector_fft = f(fr_low:fr_high);
end
% Composite loudness level difference
function [CLL_difference,freqs] = CLL(input,ref,Fs)
if length(input(:,1)) < length(input(1,:))
input = input';
end
if length(ref(:,1)) < length(ref(1,:))
ref = ref';
end
% requires Karjalainen Auditory Toolbox.
[~, ~, ~, CLL_input, freqs] = simuspatcues_KarAudMod(input(:,1),input(:,2),Fs);
[~, ~, ~, CLL_ref] = simuspatcues_KarAudMod(ref(:,1),ref(:,2),Fs);
CLL_difference = CLL_input-CLL_ref;
end
end