This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function data = exp_verhulst2018(varargin)
%EXP_VERHULST2018 Figures from Verhulst et al. (2018)
%
% Usage: output = exp_verhulst2018(flag)
%
% This function can be used to obtain Figures 3C, 5A, or 7A from the paper
% by Verhulst, Altoe, and Vasilkov (2018). These simulations might take
% some time depending on the computing power of your computer. On an average
% laptop the time required to generate Figs 3C, 5A, is of about 5 minutes
% and of about 8-9 minutes for Fig 7A.
%
% - Fig. 3C compares the simulated auditory nerve rates using the verhulst2018
% and verhulst2015 models to an AM tone with fc=4 kHz, fmod=100 Hz,
% and level of 60 dB SPL.
% - Fig. 5A Computes on-frequency average spiking rates of high-, medium-,
% and low-spontaneous rate neurons for pure tones of different level
% with either carriers of 1 kHz or 4 kHz.
% - Fig. 7A shows the envelope-following response amplitudes to 4 kHz AM tone
% fmod = 98 Hz, and levels between 45 and 80 dB, when the cochlear
% profile associated to a normal audiogram (Flat00) is used compared
% to a cochlear profile with a normal audiogram up to 1 kHz and
% with a sloping hearing loss that produces a hearing threshold
% of 35 dB HL at 8 kHz (Flat00_Slope35).
% The EFR amplitude with the Flat00 profile is also compared between
% a no-synaptopathy condition (all neurons: 13-3-3) and a synaptopathy
% profile where the low and middle spontaneous rate neurons have
% been removed (13-0-0).
%
% Examples:
% ---------
%
% To display Figure 3c from Verhulst et al. (2018) use:
%
% exp_verhulst2018('fig3c');
%
% To display Figure 5a from Verhulst et al. (2018) use:
%
% exp_verhulst2018('fig5a');
%
% To display Figure 7a from Verhulst et al. (2018) use:
%
% exp_verhulst2018('fig7a');
%
% License:
% --------
%
% This model is licensed under the UGent Academic License. Further usage details are provided
% in the UGent Academic License which can be found in the AMT directory "licences" and at
% <https://raw.githubusercontent.com/HearingTechnology/Verhulstetal2018Model/master/license.txt>.
%
% References:
% S. Verhulst, H. Bharadwaj, G. Mehraei, C. Shera, and
% B. Shinn-Cunningham. Functional modeling of the human auditory
% brainstem response to broadband stimulation. jasa, 138(3):1637--1659,
% 2015.
%
% S. Verhulst, A. Altoè, and V. Vasilkov. Functional modeling of the
% human auditory brainstem response to broadband stimulation.
% hearingresearch, 360:55--75, 2018.
%
%
% #Author: Alejandro Osses (2020): primary implementation for the AMT
% #Author: Piotr Majdak (2021): adapted to the AMT 1.0
% #License: ugent
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/experiments/exp_verhulst2018.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
data = [];
definput.import={'amt_cache'}; % from arg_amt_cache
definput.flags.disp = {'no_debug','debug'}; % flag to provide debugging information when model called with 'debug', see amt_disp
definput.flags.plot={'plot','no_plot'};
definput.flags.type={'missingflag','fig3c','fig5a','fig7a'};
[flags,keyvals] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
%%% Common parameters:
fs = 44100; % Hz, sampling frequency in Hz. Can be any sampling frequency
% but in the model the input signals are always resampled to 100 kHz
cf_flag = 'abr';
dBFS = 94; % dB full scale. Amplitude 1 = 1 Pascal
if dBFS == 94
p0 = 2e-5; % Pa, reference pressure
end
%% ------ FIG 3c Verhulst, Altoe, Vasilkov (2018) -------------------------
if flags.do_fig3c
%%% Stimulus parameters
fc = 4000; % Hz, frequency of the carrier
fmod = 100; % Hz, frequency of the modulator
mdepth = 1; % value between 0 and 1
dur = 500e-3; % stimulus duration in seconds
dur_ramp = 2.5e-3; % s, duration of the ramp
lvl = 60; % level, dB
N_samples = round(dur*fs);
dur_ramp_samples = round((dur_ramp)*fs);
% Creating a cosine ramp:
ramp = ones(N_samples,1);
ramp(1:dur_ramp_samples) = rampup(dur_ramp_samples);
ramp(end-dur_ramp_samples+1:end) = rampdown(dur_ramp_samples);
% AM stimulus and calibration:
t = (0:N_samples-1)/fs; t=t(:);
carrier = sin(2*pi*fc*t); % starts at phase = 0
env = (1 + mdepth * sin(2*pi*fmod*t-pi/2) ); % modulator starts at minimum (phase=-pi/2)
insig = env .* carrier; % Amplitude-modulated signal
insig = scaletodbspl(insig,lvl,dBFS);
insig = ramp.*insig;
%%% Model parameters (only one hearing profile, Flat00 and 13-3-3):
hear_profile = 'Flat00';
numH = 13; % Number of neurons, HSR
numM = 3;
numL = 3;
cf_flag_here = fc; % on-frequency simulation only (1 channel)
outputs = verhulst2018(insig,fs,cf_flag_here,'hearing_profile',hear_profile,'numL',numL,'numM',numM,'numH',numH,'no_cn','no_ic',flags.disp);
out2015 = verhulst2015(insig,fs,cf_flag_here,'hearing_profile',hear_profile,'numL',numL,'numM',numM,'numH',numH,'no_cn','no_ic',flags.disp);
fs_abr = outputs.fs_abr;
t_anf = (1:length(outputs.anfH))'/outputs.fs_abr;
figure;
plot(t_anf*1000,outputs.anfH); hold on, grid on
plot(t_anf*1000,out2015.anfH,'k');
xlabel('Time [ms]')
ylabel('Firing rate [spikes/s]');
num_tot = numH+numM+numL;
%%%
L_bin = 15; % samples
percent = 90; % percentage overlap
psthbinwidth = L_bin/fs_abr;
L_overlap = round((percent/100)*L_bin);
%%%
t_psth = buffer(t_anf, L_bin, L_overlap,'nodelay');
t_psth = t_psth(1,:);
anfH = buffer(outputs.anfH, L_bin, L_overlap,'nodelay'); anfH = mean(anfH);
anfH2015 = buffer(out2015.anfH, L_bin, L_overlap,'nodelay'); anfH2015 = mean(anfH2015);
anf = buffer(outputs.an_summed/num_tot, L_bin, L_overlap,'nodelay'); anf = mean(anf);
anf2015 = buffer(out2015.an_summed/num_tot, L_bin, L_overlap,'nodelay'); anf2015 = mean(anf2015);
if flags.do_plot
XL = [350 380];
YL = [-30 330];
figure;
plot(t_psth*1000,anf,'b-','LineWidth',2); hold on, grid on
plot(t_psth*1000,anf2015,'k--','LineWidth',2);
xlim(XL);
ylim(YL);
xlabel('Time [ms]');
ylabel('AN firing rate [spikes/s]');
legend('Verhulst et al. (2018)','Verhulst et al. (2015)');
title(sprintf('Auditory Nerve model output (%.0f-%.0f-%.0f neurons; bin size=%.2f ms, %.1f percent overlap)',numH,numM,numL,psthbinwidth*1000,percent));
figure;
plot(t_psth*1000,anfH,'b-','LineWidth',2); hold on, grid on
plot(t_psth*1000,anfH2015,'k--','LineWidth',2);
xlim(XL);
ylim(YL);
xlabel('Time [ms]');
ylabel('Firing rate [spikes/s]');
legend('Verhulst et al. (2018)','Verhulst et al. (2015)');
title(sprintf('High-spontaneous rate neuron output (bin size=%.2f ms, %.1f percent overlap)',psthbinwidth*1000,percent));
end
data.anfH = anfH; % output one HSR neuron
data.anf = anf; % average output using 19 neurons (13-3-3)
data.anfH2015 = anfH2015; % output one HSR neuron using Verhulst et al. (2015)
data.anf2015 = anf2015; % average output using 19 neurons (13-3-3) using Verhulst et al. (2015)
data.anf_unit = 'spikes/s';
data.fc = fc;
end
%% ------ FIG 5a Verhulst, Altoe, Vasilkov (2018) -------------------------
if flags.do_fig5a
%%% Model parameters (only one hearing profile, Flat00 and 13-3-3):
hear_profile = 'Flat00';
numH = 13; % Number of neurons, HSR
numM = 3;
numL = 3;
%%% Stimulus parameters:
fc = [1000 4000]; % 8e3; % CF in Hz;
N_fc = length(fc);
LW = [1 2]; % LineWidth to be used in the plots (one for ech CF)
lvls = 0:10:100; % test levels
L = length(lvls);
dur = 50e-3; % stimulus duration in seconds
dur_ramp = 2.5e-3; % s, duration of the up/down ramp
% Memory allocation for output variable:
spike_rates = zeros(N_fc,3,L); % 3: 1 for HSR, 1 for MSR, 1 for LSR
t = 0:1/fs:dur-1/fs; % time vector
N_samples = length(t); % length (duration) of the input signal in samples
dur_ramp_samples = round(dur_ramp*fs);
% Linear ramps:
ramp_up = (0:(dur_ramp_samples-1))'/dur_ramp_samples;
ramp_dn = (dur_ramp_samples:-1:0)'/dur_ramp_samples;
for i = 1:N_fc
CF = fc(i); % stimulus frequency in Hz
insig_orig(:,i) = sin(2*pi*CF*t'); % column array
if i == 1
ramp4insig = ones(size(insig_orig(:,i)));
idxs = 1:dur_ramp_samples;
ramp4insig(idxs) = ramp4insig(idxs) .* ramp_up;
idxs = (N_samples-dur_ramp_samples):N_samples;
ramp4insig(idxs) = ramp4insig(idxs) .* ramp_dn;
end
insig_orig(:,i) = insig_orig(:,i) .* ramp4insig; % applying the ramp
end
if flags.do_plot
% New (empty) figure where the results for each CF will be appended:
figure
end
for i = 1:N_fc
CF = fc(i); % stimulus frequency in Hz
for k = 1:L
insigs(:,k) = sqrt(2)*p0*10^(lvls(k)/20)*insig_orig(:,i); % calibrated stimulus
end
% insigs = repmat(insigs,nrep,num_stims);
outputs = verhulst2018(insigs,fs,cf_flag,'hearing_profile',hear_profile,'numL',numL,'numM',numM,'numH',numH,flags.disp);
idx_cf = find(outputs(1).cf>CF,1,'last');
fs_an = outputs(1).fs_an;
idxi = round(15e-3*fs_an)+1; % start after 15 ms to skip the strong onset
idxf = round(dur*fs_an); % end
for k = 1:L
% Reads the corresponding bin (idx_cf):
psthL =outputs(k).anfL(:,idx_cf);
psthM =outputs(k).anfM(:,idx_cf);
psthH =outputs(k).anfH(:,idx_cf);
% Averaging
spike_rates(i,1,k)= mean(psthH(idxi:idxf));
spike_rates(i,2,k)= mean(psthM(idxi:idxf));
spike_rates(i,3,k)= mean(psthL(idxi:idxf));
end
if flags.do_plot
plot(lvls,squeeze(spike_rates(i,1,:)),'ro-' ,'LineWidth',LW(i)); hold on, grid on
plot(lvls,squeeze(spike_rates(i,2,:)),'bs--','LineWidth',LW(i));
plot(lvls,squeeze(spike_rates(i,3,:)),'md-' ,'LineWidth',LW(i));
end
%%%
end
if flags.do_plot
xlim([min(lvls) max(lvls)])
title(sprintf('Average firing rates at CF=%.1f Hz',CF))
xlabel('Stimulus Level (dB SPL)')
ylabel('Firing Rate (/s)')
% legend(sprintf('LSR (%.0f units)',numsponts(1)),sprintf('MSR (%.0f units)',numsponts(2)),sprintf('HSR (%.0f units)',numsponts(3)))
end
data.figure_flag = 'do_fig5a';
data.spikes_rates = spike_rates;
data.spikes_rates_unit = 'spikes/s';
data.spikes_rates_description = 'avg. spiking rates (onset excluded) for i=carrier frequency (x2); j=1,2,3 for HSR,MSR,LSR neurons; k=test levels';
data.lvls = lvls;
end
%% ------ FIG 7a Verhulst, Altoe, Vasilkov (2018) -------------------------
if flags.do_fig7a
%%% Model parameters:
% For calculations after the simulations:
pars = arg_verhulst2018; % load all verhulst2018 default parameters;
M1 = pars.keyvals.M1;
M3 = pars.keyvals.M3;
M5 = pars.keyvals.M5;
%%% Stimulus parameters
fc = 4000; % Hz, frequency of the carrier
fmod = 98; % Hz, frequency of the modulator
mdepth = 0.85; % value between 0 and 1
dur = 100e-3; % stimulus duration in seconds
dur_ramp = 2.5e-3; % s, duration of the ramp
lvls = 45:5:80; % level, dB
L = length(lvls);
N_samples = round(dur*fs);
dur_ramp_samples = round((dur_ramp)*fs);
% Creating a cosine ramp:
ramp = ones(N_samples,1);
ramp(1:dur_ramp_samples) = rampup(dur_ramp_samples);
ramp(end-dur_ramp_samples+1:end) = rampdown(dur_ramp_samples);
t = (0:N_samples-1)/fs; t=t(:);
carrier = sin(2*pi*fc*t); % starts at phase = 0
env = (1 + mdepth * sin(2*pi*fmod*t-pi/2) ); % modulator starts at minimum (phase=-pi/2)
insig_orig = env .* carrier; % Amplitude-modulated signal
%%%
insig = nan(round(dur*fs),L);
for i = 1:L
insig(:,i) = scaletodbspl(insig_orig,lvls(i),dBFS);
insig(:,i) = ramp.*insig(:,i);
end
%%% Simulation for 3 cochlear+synaptopathy profiles:
for k = 1:3
% tic
out = [];
switch k
case 1
numH = 13;
numM = 3;
numL = 3;
out = verhulst2018(insig,fs,cf_flag,'hearing_profile','Flat00','numH',numH,'numM',numM,'numL',numL,flags.disp);
case 2
numH = 13;
numM = 3;
numL = 3;
out = verhulst2018(insig,fs,cf_flag,'hearing_profile','Flat00_Slope35','numH',numH,'numM',numM,'numL',numL,flags.disp);
case 3
numH = 13;
numM = 0;
numL = 0;
out = verhulst2018(insig,fs,cf_flag,'hearing_profile','Flat00','numH',numH,'numM',numM,'numL',numL,flags.disp);
end
% toc
fs_abr = out.fs_abr;
K = fs_abr/2;
N = length(out(1).w5);
for i = 1:L
AN = out(i).an_summed;
CN = out(i).cn;
IC = out(i).ic;
EFR_sim(i,:,k) = M1*sum(AN,2)+M3*sum(CN,2)+M5*sum(IC,2); % EFRs in time domain
[hAm(:,i,k),f] = freqz(EFR_sim(i,:,k),1,K,fs_abr);
hAm(:,i,k) = hAm(:,i,k)/N; % Parseval's theorem: [rmsdb(EFR_sim(i,:,k)) rmsdb(hAm(:,i,k))]
idx1 = fmod-20; % makes sure that the DC is not accounted for
idx2 = K;
[EFR_amp(i,k) ,idx_max(i,k)] = max(abs( hAm(idx1:idx2,i,k)));
end
end
EFR_amp = 20*log10(EFR_amp /1e-6); % converting to dB re 1uV
if flags.do_plot
figure;
plot(lvls,EFR_amp(:,1),'s-' ,'LineWidth',2,'Color','b'), hold on, grid on;
plot(lvls,EFR_amp(:,2),'o-' ,'LineWidth',2,'Color','r');
plot(lvls,EFR_amp(:,3),'d--','LineWidth',2,'Color','m');
hl = legend('NH', 'HI', 'HSR','Location','NorthWest');
set(hl,'FontSize',10);
legend('boxoff');
xlabel('Stimulus Level [dB SPL]');
ylabel('EFR Amplitude [dB re. 1\mu V]')
ylim([-62 -18]);
xlim([40 85]);
set(gca,'XTick',45:5:80);
set(gca,'YTick',-60:5:-20);
end
data.figure_flag = 'do_fig7a';
data.EFR_amp = EFR_amp;
data.EFR_amp_unit = 'dB re. 1uV';
data.spikes_rates_description = 'amplitude of the envelope-following response (EFR) for AM tones of i=test levels; k=hearing profiles';
data.lvls = lvls;
end