THE AUDITORY MODELING TOOLBOX

Applies to version: 1.0.0

View the help

Go to function

HASSAGER2016 - Sound externalization based on interaural level differences

Program code:

function Pext = hassager2016(target,template,varargin)
%HASSAGER2016   Sound externalization based on interaural level differences
%
%   Usage: Pext = hassager2016(target,template)
%
%   Input parameters:
%
%     target  : binaural signal for target sound(s).
%               matrix dimensions: time x left/right.
%     template: binaural reference signal.
%               matrix dimensions: time x left/right.
%
%   Output parameters:
%
%     Pext    : predicted degree of externalization
%
%   Optional input parameters:
%
%     'JND',jnd     ILD JND used as minimum limit for evaluation of ILD devations. Default is 1.5 [dB].
%
%     'c1',c1       Gain of ILD-deviation-to-externalization mapping function (decaying exponential) acc. to Eq. (14). Default is 3.78.
%
%     'c2',c2       Intercept of mapping function (Eq. (14)). Default is 1.
%
%     'z1',z1       Scaling parameter of mapping function (Eq. (14)). Default is 0.99.
%
%     'flow',flow   Lowest frequency considered in auditory filterbank. Default is 50 [Hz].
%
%   This model calculates the externalization based on interaural level
%   differences.
%
%   See also: data_hassager2016 sig_hassager2016
%   baumgartner2014
%   baumgartner2017
%   sig_li2020
%   demo_baumgartner2017
%
%   References:
%     H. G. Hassager, F. Gran, and T. Dau. The role of spectral detail in the
%     binaural transfer function on perceived externalization in a
%     reverberant environment. J. Acoust. Soc. Am., 139(5):2992--3000, 2016.
%     [1]arXiv | [2]www: ]
%     
%     References
%     
%     1. http://arxiv.org/abs/http://dx.doi.org/10.1121/1.4950847
%     2. http://dx.doi.org/10.1121/1.4950847
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/hassager2016.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   #StatusDoc: Good
%   #StatusCode: Perfect
%   #Verification: Unknown   
%   #Author: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria

definput.keyvals.JND = 1.5;
definput.keyvals.c1 = 3.78;
definput.keyvals.c2 = 1;
definput.keyvals.z1 = 0.99;
definput.keyvals.fs = 48e3;
definput.keyvals.flow = 50;
definput.keyvals.fhigh = 6000;
definput.keyvals.echoSupStart = 3.8e-3; % start time of echo suppresion
definput.keyvals.echoSupEnd = [10e-3,160e-3]; % fade-out time range of echo suppresion
definput.keyvals.echoSupAtten = 0.01; % suppression attenuation
definput.flags.echoSuppression = {'','echoSuppression'};
definput.flags.middleEarFilter = {'middleEarFilter',''};
[flags,kv]=ltfatarghelper({},definput,varargin);

%% Echo suppression (ES)
if flags.do_echoSuppression
  nSupStart = round(kv.echoSupStart*kv.fs); % start sample of echo suppresion
  nSupEnd = round(kv.echoSupEnd*kv.fs); % fade-out time range of echo suppresion

  NfadeOut = diff(nSupEnd); % # samples of fade out
  ESfadeOut = 0.5*(1-cos(2*pi*(0:NfadeOut)/(2*NfadeOut))); % raised-cosine ramp
  ESfadeOut = ESfadeOut*(1-kv.echoSupAtten)+kv.echoSupAtten; % scaled to supAtten
  ESwin = [kv.supAtten*ones(nSupEnd(1)-nSupStart,1);ESfadeOut(:)];
  
  Ntar = size(target,1);
  if Ntar >= nSupStart
    nEStar = nSupStart:min(nSupEnd(2),Ntar);
    target(nEStar,:,:) = target(nEStar,:,:).*repmat(ESwin,[1,size(target,2),size(target,3)]);
  end
  Ntem = size(template,1);
  if Ntem >= nSupStart
    nEStem = nSupStart:min(nSupEnd(2),Ntem);
    template(nEStem,:,:) = template(nEStem,:,:).*repmat(ESwin,[1,size(template,2),size(template,3)]);
  end
end

%% Middle ear filter
if flags.do_middleEarFilter
  b=middleearfilter(kv.fs);
  target = filter(b,1,target);
  template = filter(b,1,template);
end

%% Excitation patterns
[tar.mp,fc] = baumgartner2014_spectralanalysis(target,'flow',kv.flow,'fhigh',kv.fhigh);
tem.mp = baumgartner2014_spectralanalysis(template,'flow',kv.flow,'fhigh',kv.fhigh);
% figure; plot(fc,tar.mp); hold on; plot(fc,tem.mp); legend('tar-L','tar-R','tem-L','tem-R')

%% ILDs
tar.ild = -diff(tar.mp,1,2); % ILD = left - right
tem.ild = -diff(tem.mp,1,2);
% figure; plot(fc,tar.ild); hold on; plot(fc,tem.ild); legend('tar','tem')

%% target-template comparison -> ILD deviation
dILD = abs(tar.ild-tem.ild);
dILD(dILD < kv.JND) = 0; % limit minimum ILD difference according to JND

%% overall normalized ILD deviation
dILDnorm = mean(dILD./abs(tem.ild));

%% Externalization mapping
Pext = kv.c1*exp(-kv.z1*dILDnorm) +kv.c2;
end