This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function output = joergensen2013(x,y,fs_input,IO_param)
%JOERGENSEM2013 Speech-based envelope power spectrum (multi-resolution EPSM)
% Usage: output = joergensen2013(x, y, fs, IO_param)
%
% Input parameters:
%
% x : noisy speech mixture
% y : noise alone
% fs : sample rate in Hz
% IO_param : (optional) vector with parameters for the ideal observer
% that converts the SNRenv to probability of correct, assuming a
% given speech material. It contains four parameters of the ideal observer
% formatted as [k q m sigma_s].
%
% Output parameters:
%
% output.SNRenv: The SNRenv
% output.P_correct: The probability of correct given the
% SNRenv. This field is only included if IO_param is specified.
% Its calculation requires the Statistics ToolBox.
%
% output = JOERGENSEN2013(x, y, fs, IO_param) calculates the
% signal-to-noise envelope-power (SNRenv) ratio using the
% multi-resolution speech-based envelope spectrum model (mr-sEPSM)
% described in Joergensen et al. (2013).
% The main difference between to the Joergensen et al. (2011)
% model is that the present model estimates the envelope power
% using multi-resolution segmentation of the envelope. The segment
% duration depends on the modulation filter center-frequency. In addition,
% the modulation filter bank includes filters up to modulation frequencies
% of 256 Hz in contrast to the 64 Hz considered by the model from
% Joergensen et al. (2011).
%
% The model is based on the model from Joergensen et al. (2011), which consists of the following stages:
%
% 1 A gammatone bandpass filterbank to simulate the auditory filters
%
% 2 An envelope extraction stage via the Hilbert Transform
%
% 3 A modulation filterbank
%
% 4 Computation of the long-term envelope power (*output.SNRenv*)
%
% 5 A decision mechanism based on a statistically ideal observer (*output.P_correct*)
%
%
% See also: sig_joergensen2011 plot_joergensen2013 demo_joergensen2013
% joergensen2013_sim exp_joergensen2013 joergensen2011 relanoiborra2019
%
% References:
% S. Joergensen and T. Dau. Predicting speech intelligibility based on
% the signal-to-noise envelope power ratio after modulation-frequency
% selective processing. J. Acoust. Soc. Am., 130(3):1475--1487, 2011.
%
% S. Jørgensen, S. D. Ewert, and T. Dau. A multi-resolution envelope
% power based model for speech intelligibility. J. Acoust. Soc. Am.,
% 134(1):436--446, 2013.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/joergensen2013.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Submitted
% #StatusCode: Submitted
% #Verification: Untrusted
% #Requirements: MATLAB M-Signal M-Stats
if nargin < 3
error('Too few input arguments.');
end
if length(x)~=length(y)
error('x and y should have the same length');
end
% initialization
x = x(:)'; % Noisy speech row vector
y = y(:)'; % Noise alone speech row vector
fs = 22050;
cf_aud = [63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000]; % centerfrequencies of the gammatone filters
cf_mod = [1 2 4 8 16 32 64 128 256];% centerfrequencies of the modulation filters
HT_diffuse = [37.5 31.5 26.5 22.1 17.9 14.4 11.4 8.4 5.8 3.8 2.1 1.0 0.8 1.9 0.5 -1.5 -3.1 -4.0 -3.8 -1.8 2.5 6.8 ]; % Diffuse field hearing threshold in quiet: ISO 389-7:2005
if fs_input ~= fs
x = resample(x, fs, fs_input);
y = resample(y, fs, fs_input);
end
N = length(x);
%% Filtering through gammatone filterbank
g = gammatonefir(cf_aud,fs,'complex');
X = 2*real(ufilterbank(x,g,1));
Y = 2*real(ufilterbank(y,g,1));
%% ------------------ determining which frequency bands that are above
%% the hearing threshold.
% The spectrum levels (in SPL) of the stimuli are determined from a 1/3-octave analysis, since the threshold to compare with
% is spectrum levels.
mix_rms = thirdOctRMSAnalysis(x,fs,cf_aud);
mixRMS_dB = 20*log10(mix_rms);
bands = find(mixRMS_dB>HT_diffuse(1:length(cf_aud))); % The bands to process further are the bands where the mix has spectrum levels above the hearing threshold.
%% ------------------ calculating envelopes of temporal outputs
% lowpass filtering at 150 Hz
[bb, aa] = butter(1, 150*2/fs);
x_env = zeros(N,length(cf_aud));
y_env = zeros(N,length(cf_aud));
x_env(:,bands) = abs(hilbert(X(:,bands))); % envelope
y_env(:,bands) = abs(hilbert(Y(:,bands)));
x_env = filter(bb,aa,x_env);
y_env = filter(bb,aa,y_env);
%downsampling
D = 10;
fsNew = fs/D;
x_env = resample(x_env,fsNew,fs);
y_env = resample(y_env,fsNew,fs);
%
SNRenv_n_p = zeros(length(cf_mod),length(cf_aud));
for p = bands% For every audio channel
%% ----------------- Analysis via modulation filterbank
xx(:,:,p) = modFbank_v3(x_env(:,p),fsNew,cf_mod);
yy(:,:,p) = modFbank_v3(y_env(:,p),fsNew,cf_mod);
N_xx = size(xx,2);
WinDurs = 1./cf_mod; %The window duration is the inverse of the centerfrequency of the modulation channel
WinLengths = floor(WinDurs * fsNew);
Nsegments = floor(N_xx./WinLengths)+ ones(1,length(cf_mod));% The total number of segments is Nframes plus any additional "leftover"
P_env_xx = zeros(Nsegments(end),length(cf_mod),length(cf_aud));
P_env_yy = P_env_xx;
if find(WinLengths == N_xx)% If the duration of the stimulus is exactly equalt to the window duration
segIdx = find(WinLengths == N_xx);
Nsegments(segIdx) = Nsegments(segIdx)-1;
end
DC_power_x = (mean(x_env(:,p)).^2) /2;
DC_power_y = (mean(y_env(:,p)).^2) /2;
for n = 1:length(cf_mod) %For each modulation channel
% Initialize temporary variables:
tmp_xx = zeros(WinLengths(n),Nsegments(n));
tmp_yy = tmp_xx;
segLengths = zeros(1,Nsegments(n)) ;
for i = 1:Nsegments(n) %For each temoral segment of the signal
% find the start and end index of the frame
if i > (Nsegments(n)-1)
startIdx = 1 + (i-1)*WinLengths(n);
endIdx = N_xx;
else
startIdx = 1 + (i-1)*WinLengths(n);
endIdx = startIdx + WinLengths(n)-1;
end
segment = startIdx:endIdx;
segLengths(i) = length(segment);
tmp_xx(1:segLengths(i),i) = xx(n,segment,p)-(sum(xx(n,segment,p))/segLengths(i));
tmp_yy(1:segLengths(i),i) = yy(n,segment,p)-(sum(yy(n,segment,p))/segLengths(i));
end
P_env_xx(1:Nsegments(n),n,p) = sum(tmp_xx.*tmp_xx,1)./segLengths ./ DC_power_x; % computing the envelope power
P_env_yy(1:Nsegments(n),n,p) = sum(tmp_yy.*tmp_yy,1)./segLengths ./ DC_power_y;
if sum(sum(isnan(P_env_xx(:,n,p))))
P_env_xx(isnan(P_env_xx(:,n,p)),n,p) = 0;
end
if sum(sum(isnan(P_env_yy(:,n,p))))
P_env_yy(isnan(P_env_yy(:,n,p)),n,p) = 0;
end
P_env_yy(:,n,p) = min(P_env_xx(:,n,p),P_env_yy(:,n,p)); % The envelope power of the noise is the minimum of Penv of the mixture
% or the noise.
xx_idx_nonZero = P_env_xx(:,n,p)~=0;
yy_idx_nonZero = P_env_yy(:,n,p)~=0;
threshold = 0.001; % The envelope power cannot go below 0.001 (-30 dB) reflecting
% our minimum threshold of sensitivity to modulation detection
P_env_yy(yy_idx_nonZero,n,p) = max( P_env_yy(yy_idx_nonZero,n,p),threshold);
P_env_xx(xx_idx_nonZero,n,p)= max(P_env_xx(xx_idx_nonZero,n,p),threshold);
SNRenvs_tmp = (P_env_xx(xx_idx_nonZero,n,p)-P_env_yy(yy_idx_nonZero,n,p)) ./P_env_yy(yy_idx_nonZero,n,p); % calculation of SNRenv
SNRenvs_tmp = max(0.001,SNRenvs_tmp); % Truncated at -30 dB for numerical reasons.
SNRenv_n_p(n,p) = mean(SNRenvs_tmp);%sqrt(sum(SNRenvs{q}.^2))/sum(SNRenvs{q});%
end
end
% ----------------- Integrating the SNRenv across audio and modulation bands---------------------------------------------------
modFiltersMatrix = [[1:5 0 0 0 0]; [1:5 0 0 0 0]; [1:5 0 0 0 0]; [1:6 0 0 0]; [1:6 0 0 0]; [1:6 0 0 0];...
[1:7 0 0] ; [1:7 0 0]; [1:7 0 0]; [1:8 0 ]; [1:8 0 ]; [1:8 0 ]; 1:9; 1:9; 1:9; 1:9;...
1:9; 1:9; 1:9; 1:9; 1:9; 1:9;]';
SNRenv_n_p(modFiltersMatrix(:,bands) == 0) = 0; %Only modulation filters with center frequency below
% 1/4 of the centerfrequency of a given audio
% channel is used. (Verhey, Dau, and Kollmeier, 1999)
SNRenv_p = sqrt(sum(SNRenv_n_p.^2,1)); % Combine across modulation filters: %SNRenv(p) eq. (4)
SNRenv = (sqrt(sum(SNRenv_p.^2)));% Combine across audio filters: eq. (5)
output.SNRenv = SNRenv;
if nargin < 4
elseif nargin < 5
P_correct = IdealObserver_v1(SNRenv,IO_param);
output.P_correct = P_correct;
end
% ---------------------------------------------------------------------------------------------
end
function y = rms(x)
L = length(x);
y=norm(x)/sqrt(L);
end
function rms_out = thirdOctRMSAnalysis(x,fs,midfreq)
if nargin<3
midfreq=[63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 ];
end
N = length(x);
X = (fft(x));
X_mag = abs(X) ;
X_power = X_mag.^2/N ;% power spectrum.
X_power_pos = X_power(1:fix(N/2)+1) ;
X_power_pos(2:end) = X_power_pos(2:end).* (2) ; %take positive frequencies only and mulitply by two-squared to get the same total energy(used since the integration is only performed for positive freqiencies)
freq= linspace(0,fs/2,length(X_power_pos));
%resolution of data
resol=freq(2)-freq(1);
crossfreq(1)=midfreq(1)/(2^(1/6));
crossfreq(2:length(midfreq)+1)=midfreq*(2^(1/6));
%cross-over indicies
y=crossfreq/resol;
%rounding up
crosselem=round(y);
for n=1:length(y)
if crosselem(n)<y(n)
crosselem(n)=crosselem(n)+1;
end
end
nn=1;
rms_out(1:length(midfreq)) = 0;
while crossfreq(nn+1)<=freq(end)% for nn =1:length(crossfreq)-1
rms_out(nn) = sqrt(sum(X_power_pos(crosselem(nn):crosselem(nn+1)-1))/N);
nn=nn+1;
if 1+nn > length(crossfreq)
break
end
end
end
function x_filt = modFbank_v3(Env,fs,cf_mod)
%
% This function is an implementation of a modulation filterbank similar to the EPSM-filterbank
% as presented by Ewert & Dau 2000. This implementation consists of a lowpass
% filter with a cutoff at 1 Hz, in parallel with 8 bandpass filters with
% octave spacing. the Center-frequencies of the bandpass filters are lower
% than the original from Ewert & Dau (2000).
%
% Inputs:
% Env: The envelope to be filtered
% fs: sampling frequency of the envelope
% cf_mod: centerfrequencies of the modulation filters
%
% Outputs:
% x_filt: Temporal outputs for each of the modulation filters
%
%
% Created by Søren Jørgensen jan 2010
% last update 07 mar 2014
% Copyright Søren Jørgensen
if nargin<3
%band center frequencies
cf_mod=[1 2 4 8 16 32 64 128 256];
end
if size(Env,1) > 1
Env = Env';
end
if mod(length( Env),2) == 0
%number is even
Env = Env(1:end-1);
else
%number is odd
end
Q = 1;
N = length(Env);
X = fft(Env);
N_pos_specs = fix(N/2)+1;
pos_freqs= linspace(0,fs/2,N_pos_specs);
freqs = [pos_freqs -1*fliplr(pos_freqs(2:end))];
% Initialize transfer function
TFs = zeros(length(cf_mod),length(freqs));
% Calculating frequency-domain transferfunction for each center frequency:
for k = 2:length(cf_mod)
TFs(k,1:end) = 1./(1+ (1j*Q*(freqs(1:end)./cf_mod(k) - cf_mod(k)./freqs(1:end)))); % p287 Hambley.
end
fcut = 1;% cutoff frequency of lowpassfilter:
n = 3;% order:
% Lowpass filter squared transfer function:
Wcf(1,:) = 1./(1+((2*pi*freqs/(2*pi*fcut)).^(2*n))); % third order butterworth filter TF from: http://en.wikipedia.org/wiki/Butterworth_filter
TFs(1,:) = sqrt(Wcf(1,:));
X = repmat(X,length(cf_mod),1);
X_filt = X.*TFs;
x_filt = real(ifft(X_filt,N,2));
end
function Pcorrect = IdealObserver_v1(SNRenv_lin,parameters)
%%
% IdealObserver: Converts the overall SNRenv to percent correct.
%
% Usage: [Pcorrect SNRenv ] = IdealObserver(SNRenv_lin,parameters)
%
% SNRenv_lin : vector with the SNRenv values (not in dB) for each input SNR
% Parameters : vector with the parameters for the ideal Observer formatted as [k q m sigma_s]
%
% Søren Jørgensen august 2010
% last update 10-June 2013
% Copyright Søren Jørgensen
%%
if nargin < 2
error('You have to specify the k,q,m,sigma_s parameters for the IdealObserver')
end
k = parameters(1);
q = parameters(2);
m = parameters(3);
sigma_s = parameters(4);
% ---------- Converting from SNRenv to d_prime --------------
d_prime = k*(SNRenv_lin).^q;
%----------- Converting from d_prime to Percent correct, Green and Birdsall (1964)----------
Un = 1*norminv(1-(1/m));
mn = Un + (.577 /Un);% F^(-1)[1/n] Basically gives the value that would be drawn from a normal destribution with probability p = 1/n.
sig_n= 1.28255/Un;
Pcorrect = normcdf(d_prime,mn,sqrt(sigma_s.^2+sig_n.^2))*100;
% Green, D. M. and Birdsall, T. G. (1964). "The effect of vocabulary size",
% In Signal Detection and Recognition by Human Observers,
% edited by John A. Swets (John Wiley & Sons, New York)
end