This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [varargout] = barumerli2021_featureextraction(sofa_obj, varargin)
%barumerli2021_featureextraction extract HRTF using gammatone, frequency bands and ITDs from SOFA object
%
% Usage: [template, target] = barumerli2021_featureextraction(SOFAobj)
%
% Input parameters:
% hrtf_sbj: Struct in SOFA format with DTFs
%
% Output parameters:
% template : internal templates with specific feature points
% target : (optional) preprocessed target struct
%
% BARUMERLI2021_FEATUREEXTRACTION(...) computes temporally integrated
% spectral magnitude profiles and itd.
%
% BARUMERLI2021_FEATUREEXTRACTION accepts the following optional parameters:
%
% See also: barumerli2021
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/barumerli2021_featureextraction.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% References:
% AUTHOR: Roberto Barumerli
% Information Engineering Dept., University of Padova, Italy, 2020
definput.import={'amt_cache', 'barumerli2021_featureextraction'};
definput.keyvals.fs = sofa_obj.Data.SamplingRate;
[flags, kv] = ltfatarghelper({}, definput, varargin);
% some checks... please if you need to change them be careful...
assert(~xor(flags.do_source, ~isempty(kv.source_ir)), ...
'Please add the flag source to enable the source computation!')
assert(xor(flags.do_all, flags.do_template | flags.do_target))
if(flags.do_source)
assert(flags.do_target, ...
'If you need to add a source, please specify the target flag!')
end
%% extract coordinates
% Get directions from SOFA file
coords = barumerli2021_coordinates(sofa_obj);
% NOTE: assume position on a sphere with radius of 1 meter
% if you change it there will be a problem with the cached points
% for the sphere interpolation!
coords.normalize_distance();
% do_all, do_template and do_target allow to reduce the number of times
% that the features require to be computed
if (flags.do_all || flags.do_template)
features = local_computefeatures(sofa_obj, coords, kv, flags);
end
%% TEMPLATE
if flags.do_template || flags.do_all
%% SPHERICAL HARMONIC INTERPOLATION
if flags.do_monoaural
% split polar
pl = size(features.polar, 2);
polar1 = features.polar(:, 1:pl/2);
polar1 = local_resamplefeatures(polar1, features.coords);
polar2 = features.polar(:, (pl/2+1):end);
polar2 = local_resamplefeatures(polar2, features.coords);
template.polar = [polar1, polar2];
else
template.polar = local_resamplefeatures(features.polar, ...
features.coords);
end
[template.lateral, template.coords] = ...
local_resamplefeatures(features.lateral, features.coords);
template.lateral_bis = ...
local_resamplefeatures(features.lateral_bis, features.coords);
template.fc = features.fc;
end
%% TARGET
if flags.do_target
target = local_computefeatures(sofa_obj, coords, kv, flags);
elseif flags.do_all
assert(logical(flags.do_source_broadband))
assert(exist('template', 'var') == 1)
target = template;
if ~isempty(kv.targ_az)
coords_search = barumerli2021_coordinates([kv.targ_az, kv.targ_el, ones(size(kv.targ_el))], 'spherical');
[coords_new, idx] = extract_directions_from_coords(target.coords, coords_search);
target.coords = coords_new;
target.lateral = target.lateral(idx,:);
if ~isempty(target.lateral_bis)
target.lateral_bis = target.lateral_bis(idx,:);
end
if ~isempty(target.polar)
target.polar = target.polar(idx,:);
end
end
end
% output parameters
if flags.do_template
varargout{1} = template;
elseif flags.do_target
varargout{1} = target;
else
varargout{1} = template;
varargout{2} = target;
end
end
function [feature] = local_computefeatures(sofa_obj, coords, kv, flags)
% normalize HRTF
sofa_frontal = local_extractdirections(sofa_obj, barumerli2021_coordinates([0,0,1], 'spherical'));
sofaFData = sofa_frontal.Data.IR(1, :, :);
sofa_obj.Data.IR = sofa_obj.Data.IR ./ (max(abs(sofaFData(:)))+eps);
stimulus = sofa_obj.Data.IR;
if flags.do_target
coords_search = barumerli2021_coordinates([kv.targ_az, kv.targ_el, ones(size(kv.targ_el))], 'spherical');
[sofa_filtered, coords] = local_extractdirections(sofa_obj, coords_search);
stimulus = sofa_filtered.Data.IR;
if flags.do_source
% normalize sound source
kv.source_ir = kv.source_ir ./ max(abs(kv.source_ir));
stimulus = local_convolvesource(sofa_filtered.Data.IR, sofa_filtered.Data.SamplingRate, kv.source_ir, kv.source_fs);
end
end
%% compute LATERAL
% parameters to transform into the jnd scale
% check Reijniers2014 for these magic numbers
a = 32.5e-6;
b = 0.095;
if strcmp(flags.feature_lateral, 'itd_broadband')
itd = itdestimator(stimulus, 'MaxIACCe', 'fs', kv.fs, flags.disp);
% transform into the jnd scale - check Reijniers2014
itd = sign(itd) .* ((log(a + b * abs(itd)) - log(a)) / b);
else
error(['The lateral feature ', ...
flags.lateral_feature, ' was not recognized'])
end
% ILD
ild_broad = (mag2db(squeeze(rms(stimulus(:,1,:), 'dim', 3))) - ...
mag2db(squeeze(rms(stimulus(:,2,:),'dim', 3))));
feature.lateral = itd;
feature.lateral_bis = ild_broad;
%% compute POLAR
% compute spectral analysis
[dtf, fc] = local_spectralanalysis(stimulus, kv);
for ch=1:size(dtf, 2)
for side=1:2
dtf(:,ch,side,:) = sqrt(max(squeeze(dtf(:,ch,side,:)),0));
end
end
% Averaging over time (RMS)
dtf = (rms(dtf, 'dim', 4));
% convert in dB
dtf = 20*log10(dtf);
if strcmp(flags.feature_polar, 'dtf')
feature.polar = dtf;
elseif strcmp(flags.feature_polar, 'pge')
% compute Positive Gradient Extraction (PGE)
pge = zeros(size(dtf, 1), size(dtf, 2)-1, size(dtf, 3));
for i=1:size(dtf,1)
[pge(i, :, :), gfc] = ...
baumgartner2014_gradientextraction(squeeze(dtf(i,:,:)), fc);
end
fc = gfc;
feature.polar = pge;
else
error(['The polar feature ', ...
flags.polar_feature, ' was not recognized'])
end
feature.fc = fc;
%% combine SPECTRAL
if flags.do_reijniers
feature.lateral_bis = [squeeze(dtf(:,:,1)) + squeeze(dtf(:,:,2))];
feature.polar = [squeeze(dtf(:,:,1)) - squeeze(dtf(:,:,2))];
elseif flags.do_interaural_difference
feature.polar = [];
elseif flags.do_monoaural
polar_idx = find(fc>kv.monoaural_bw(1) & fc<kv.monoaural_bw(2));
assert(~isempty(polar_idx), 'monoaural frequency bands empty')
feature.fc = fc(polar_idx);
feature.polar = reshape(feature.polar(:,polar_idx,:), ...
size(feature.polar(:,polar_idx,:), 1),[]);
else
error(['The polar combination ', ...
flags.feature_polar_combine, ' was not recognized'])
end
feature.coords = coords;
end
function [sofa_obj, coords_new, idx] = local_extractdirections(sofa_obj, coords_search)
coords = barumerli2021_coordinates(sofa_obj);
coords.normalize_distance();
[coords_new, idx] = extract_directions_from_coords(coords, coords_search);
sofa_obj.API.('M') = length(idx);
sofa_obj.Data.IR = sofa_obj.Data.IR(idx,:,:);
sofa_obj.SourcePosition = sofa_obj.SourcePosition(idx,:);
end
function [coords_new, idx] = extract_directions_from_coords(coords, coords_search)
if(coords_search.count_pos() ~= 0)
% TODO: warning... some points are avoided because of numerical
[idx, coords_new] = coords.find_positions(coords_search);
if(numel(idx) ~= coords_search.count_pos())
amt_disp(sprintf('Requested HRTF''s points: %i\nFound: %i', ...
coords_search.count(), numel(idx)))
end
else
coords_new = coords;
idx = 1:coords_search.count_pos();
end
end
function stimulus = local_convolvesource(hrir, hrir_fs, source, source_fs)
if source_fs <= 0
error('source_fs is zero')
end
if source_fs ~= hrir_fs
fsgcd = gcd(hrir_fs, source_fs);
source = resample(source, hrir_fs/fsgcd, source_fs/fsgcd);
end
stimulus = zeros(size(hrir,1), ...
size(hrir,2), ...
size(hrir,3) + length(source) - 1);
for i = 1:size(hrir, 1)
stimulus(i,:,:) = lconv(squeeze(hrir(i,:,:))',source)';
end
end
function [dtf, fc] = local_spectralanalysis(stimulus, kv)
% this function expect the stimulus organized as
% [directions, ear_channel, time_index]
assert(size(stimulus, 2) == 2);
[dir_len, ear_len, time_len] = size(stimulus);
dir_idx = 1;
ear_idx = 2;
time_idx = 3;
% permute in order to use ufilterbankz
stimulus = permute(double(stimulus),[time_idx, dir_idx, ear_idx]);
% pad to account for longer filters in the filterbank
pad_len = 0.05; % secs
pad_mat = zeros(pad_len*kv.fs - time_len, dir_len, ear_len);
stimulus = cat(1, stimulus, pad_mat);
% compute templates features
if kv.space == 1 % Standard spacing of 1 ERB
[dtf,fc] = auditoryfilterbank(stimulus(:,:), kv.fs, 'flow', ...
kv.flow, 'fhigh', kv.fhigh);
else
fc = audspacebw(kv.flow, kv.fhigh, kv.space, 'erb');
[bgt,agt] = gammatone(fc, kv.fs, 'complex');
% channel (3rd) dimension resolved
dtf = 2*real(ufilterbankz(bgt,agt, stimulus(:,:)));
end
% restore 2 channels
dtf_size = size(stimulus);
dtf = reshape(dtf,[dtf_size(1),length(fc),dtf_size(2),dtf_size(3)]);
dtf = permute(dtf, [3 2 4 1]);
end
function [feature_interp, coords_interp] = local_resamplefeatures(feature, coords)
if isempty(feature)
feature_interp = zeros(0);
coords_interp = zeros(0);
return
end
% sample uniformly over sphere with N is number of directions
% NOTE: amt_cache('get', 'dirs') contains the sampled point on a unitary
% sphere
%dirs = amt_cache('get', 'dirs');
dirs = amt_load('barumerli2021','dirs.mat');
% remove the points from the unitary sphere below HRTF lowest elevation
coords_init = coords.return_positions('cartesian');
dirs = dirs.cache.value;
dirs = dirs(dirs(:,3) > min(coords_init(:, 3)),:);
coords_interp = barumerli2021_coordinates(dirs, 'cartesian');
%% interpolate at uniformly distributed directions and update feature
% calculate spherical harmonic coefficients of H and itd, using tikonov regularization
sh_order = 15; % spherical harmonic order
Y_N_tik = local_SH(sh_order, coords);
% calculate SH coefficients of H and ITD, using tikonov regularization
lambda = 4.;
SIG = eye((sh_order+1)^2);
SIG(1:(2+1)^2,1:(2+1)^2) = 0;
% interpolate at uniformly distributed directions and update
Y_N_interp = local_SH(sh_order, coords_interp);
for c = 1:size(feature, 3)
c_feat = (Y_N_tik'*Y_N_tik+lambda*SIG)\Y_N_tik'*squeeze(feature(:,:,c));
feature_interp(:,:,c) = Y_N_interp*c_feat;
end
end
function Y_N = local_SH(N, coords)
% calculate spherical harmonics up to order N for directions dirs [azi ele;...] (in radiant)
%
dirs = coords.return_positions('spherical');
dirs = [deg2rad(dirs(:,1)), deg2rad(dirs(:,2))];
N_dirs = size(dirs, 1);
N_SH = (N+1)^2;
dirs(:,2) = pi/2 - dirs(:,2); % convert to inclinations
assert(N_SH < N_dirs, ...
['Spherical harmonics: beware that the number of provided ',...
'coordinates is too low to obtain a precise interpolation'])
Y_N = zeros(N_SH, N_dirs);
% n = 0
Lnm = legendre(0, cos(dirs(:,2)'));
Nnm = sqrt(1./(4*pi)) * ones(1,N_dirs);
CosSin = zeros(1,N_dirs);
CosSin(1,:) = ones(1,size(dirs,1));
Y_N(1, :) = Nnm .* Lnm .* CosSin;
% n > 0
idx = 1;
for n=1:N
m = (0:n)';
Lnm = legendre(n, cos(dirs(:,2)'));
condon = (-1).^[m(end:-1:2);m] * ones(1,N_dirs);
Lnm = condon .* [Lnm(end:-1:2, :); Lnm];
mag = sqrt( (2*n+1)*factorial(n-m) ./ (4*pi*factorial(n+m)) );
Nnm = mag * ones(1,N_dirs);
Nnm = [Nnm(end:-1:2, :); Nnm];
CosSin = zeros(2*n+1,N_dirs);
% m=0
CosSin(n+1,:) = ones(1,size(dirs,1));
% m>0
CosSin(m(2:end)+n+1,:) = sqrt(2)*cos(m(2:end)*dirs(:,1)');
% m<0
CosSin(-m(end:-1:2)+n+1,:) = sqrt(2)*sin(m(end:-1:2)*dirs(:,1)');
Ynm = Nnm .* Lnm .* CosSin;
Y_N(idx+1:idx+(2*n+1), :) = Ynm;
idx = idx + 2*n+1;
end
Y_N = Y_N.';
end