This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [prior,mrs,s] = baumgartner2016_parametrization(s)
% baumgartner2016_parametrization - Joint optimization of model parameters
% Usage: [gamma,prior] = baumgartner2016_parametrization(s,kv)
%
% Input parameter:
% s : strucure containing subject's data. It must include the
% following fields:
% Obj ... the listener's HRTF as SOFA object.
% itemlist ... the listener's response patterns. (See help
% localizationerror)
%
% Output parameter:
% gamma : degree of selectivity in 1/dB
%
% prior : prior expectation paramter
%
% BAUMGARTNER2016_PARAMETRIZATION(...) jointly optimizes the degree of
% selectivity Gamma, the response scatter epsilon induced by
% sensorimotor mapping, and the listener-specific sensitivity S_l.
%
% Examples:
% ---------
%
% This example shows how to parametrize the model according to the data
% from baumgartner2016 :
%
% s = data_baumgartner2016('Long','model'); % Load the experimental data
% [gamma,prior] = baumgartner2016_parametrization(s);
%
% See also: baumgartner2016, data_baumgartner2016
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling the effects of
% sensorineural hearing loss on auditory localization in the median
% plane. Trends in Hearing, 20:1--11, 2016.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/baumgartner2016_parametrization.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%% Evaluate performance as a function of the lateral angle
definput=arg_baumgartner2016;
disp('Parametrization only done for median plane!')
latseg = 0;%-60:20:60; % centers of lateral segments
dlat = 30; % lateral range (+-) of each segment
for ll = 1:length(s)
s(ll).target = [];
s(ll).response = [];
s(ll).Nt = [];
s(ll).baseline.pe_exp = real(localizationerror(s(ll).itemlist,'rmsPmedianlocal'));
s(ll).baseline.qe_exp = real(localizationerror(s(ll).itemlist,'querrMiddlebrooks'));
s(ll).pe_exp_lat = zeros(1,length(latseg));
s(ll).qe_exp_lat = zeros(1,length(latseg));
for ii = 1:length(latseg)
latresp = s(ll).itemlist(:,7);
idlat = latresp <= latseg(ii)+dlat & latresp > latseg(ii)-dlat;
s(ll).mm2 = s(ll).itemlist(idlat,:);
s(ll).mm2(:,7) = 0; % set lateral angle to 0deg such that localizationerror works also outside +-30deg
s(ll).pe_exp_lat(ii) = real(localizationerror(s(ll).mm2,'rmsPmedianlocal'));
s(ll).qe_exp_lat(ii) = real(localizationerror(s(ll).mm2,'querrMiddlebrooks'));
s(ll).target{ii} = real(s(ll).mm2(:,6)); % polar angle of target
s(ll).response{ii} = real(s(ll).mm2(:,8)); % polar angle of response
s(ll).Nt{ii} = length(s(ll).target{ii});
end
end
%% Optimize
x0 = [0,25]; % init of Gamma resp. epsilon
xopt = fminsearch(@(x) local_evaldistbaumgartner2016parametrization(s,x,latseg,definput),x0,...
optimset('Display','iter','MaxIter',50,'TolX',1,'PlotFcns',@optimplotx)...
);
% xopt = fminbnd(@(x) evaldist_baumgartner2016parametrization(s,x,latseg,definput),eps,100,...
% optimset('Display','iter','MaxIter',50,'TolX',0.1,'PlotFcns',@optimplotx)...
% );
gamma = definput.keyvals.gamma
prior = xopt(1)%definput.keyvals.prior;
mrs = xopt(2)
end
function [distmetric] = local_evaldistbaumgartner2016parametrization(s,x,latseg,definput)
gamma = definput.keyvals.gamma;
prior = x(1); % x(2);
epsilon = x(2);%17;
%% Calibrate the sensitivity
kv.mrsmsp = epsilon;
kv.gamma = gamma;
kv.do = 1;
c.latseg = 0;%[-20,0,20];
% c.SPL = [s.SPL];
% for ii = 1:length(s)
% c.stim{ii} = s(ii).stim;
% end
% s = baumgartner2016_calibration(s,kv,c,0.5);
s = baumgartner2016_calibration(s,kv);
%% Total number of targets
Nt = zeros(length(s),1); %init
for ll = 1:length(s)
Nt(ll) = sum([s(ll).Nt{:}]);
end
Ntotal = sum(Nt);
%% LocaMo
dQEsq = 0;
dPEsq = 0;
for ll = 1:length(s)
Nt(ll) = sum([s(ll).Nt{:}]);
for ii = 1:length(latseg)
if s(ll).Nt{ii} > 0
s(ll).sphrtfs{ii} = 0; % init
s(ll).p{ii} = 0; % init
[s(ll).sphrtfs{ii},polang] = extractsp( latseg(ii),s(ll).Obj );
% [s(ll).p{ii},respangs] = baumgartner2016(...
% s(ll).sphrtfs{ii},s(ll).sphrtfs{ii},s(ll).id,s(ll).fs,...
% 'lat',latseg(ii),'polsamp',polang,...
% 'S',s(ll).S,...
% 'mrsmsp',epsilon,'gamma',gamma,'prior',prior,...
% 'SPL',s(ll).SPL,'stim',s(ll).stim,'fsstim',s(ll).fsstim);
[s(ll).p{ii},respangs] = baumgartner2016(...
s(ll).sphrtfs{ii},s(ll).sphrtfs{ii},s(ll).id,s(ll).fs,...
'lat',latseg(ii),'polsamp',polang,...
'S',s(ll).S,...
'mrsmsp',epsilon,'gamma',gamma,'prior',prior);
[ qe,pe ] = baumgartner2014_pmv2ppp( ...
s(ll).p{ii} , polang , respangs , s(ll).target{ii});
dQE_lat = qe - s(ll).qe_exp_lat(ii);
dPE_lat = pe - s(ll).pe_exp_lat(ii);
% Accumulate squared errors weighted by number of targets
dQEsq = dQEsq + dQE_lat.^2 * s(ll).Nt{ii}/Ntotal;
dPEsq = dPEsq + dPE_lat.^2 * s(ll).Nt{ii}/Ntotal;
end
end
end
% [qe_chance,pe_chance] = pmv2ppp(ones(49,44));
% distmetric = (dQEsq/qe_chance^2) + (dPEsq/pe_chance^2); % Joint distance metric of QE and PE (normalized by chance performance)
QEmax = 100;
PEmax = 90;
distmetric = sqrt((dQE/QEmax).^2 + (dPE/PEmax).^2);
end