This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [SRTs conditions] = joergensen2013_sim(NSpeechsamples,varargin)
%joergensen2013_sim Simulate the experiments shown in figure 2 of Jørgensen, Ewert and Dau (2013)
% Usage: [SRTs conditions] = joergensen2013_sim(NSpeechsamples,varargin)
%
% Output parameters:
% SRT : the SRT as a function of the condition used in the experiment
% conditions : the conditions used for a given experiment
%
% The flag may be one of:
%
% 'Jetal2013' Simulate the conditions with SSN, SAM and ISTS using the
% CLUE speech materual, shown in fig2 of
% Jørgensen, Ewert and Dau (2013)
%
% 'JandD2011reverb' Simulate the conditions with reverberation
% shown in fig2 of Jørgensen, Ewert and Dau (2013)
%
% 'JandD2011specsub' Simulate conditions with spectral subtraction
% shown in fig2 of Jørgensen, Ewert and Dau (2013)
%
% 'Kjems2009' Simulate the data from Kjems et al. (2009)
% shown in fig2 of Jørgensen, Ewert and Dau (2013)
%
% 'FP1990' Simulate the data from Festen and Plomp
% (1990) shown in fig2 of Jørgensen, Ewert and Dau (2013)
%
% ---------
%
% Please cite Joergensen et al. (2013) if you use
% this model.
%
% See also: joergensen2013, plot_joergensen2013
%
% References:
% S. Jørgensen, S. D. Ewert, and T. Dau. A multi-resolution envelope
% power based model for speech intelligibility. J. Acoust. Soc. Am.,
% 134(1):436--446, 2013.
%
% U. Kjems, J. B. Boldt, M. S. Pedersen, T. Lunner, and D. Wang. Role of
% mask pattern in intelligibility of ideal binary-masked noisy speech. J.
% Acoust. Soc. Am., 126:1415--1426, 2009.
%
% J. Festen and R. Plomp. Effects of fluctuating noise and interfering
% speech on the speech-reception threshold for impaired and normal
% hearing. J. Acoust. Soc. Am., 88(4):1725--1736, 1990.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/joergensen2013_sim.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% WARNING: This Model or Modelstage does not currently meet the AMT requirements.
disp('**********************************************************');
disp('AMT WARNING: incomplete file --- missing: original stimuli');
disp('**********************************************************');
definput.flags.type = {'JandD2011specsub','JandD2011reverb','FP1990','Kjems2009','Jetal2013'};
[flags,keyvals] = ltfatarghelper({},definput,varargin);
% ------- simulate experiment with reverberation
if flags.do_Jetal2013
%in the absence of the original stimuli - using those from joergensen2011 instead
data = amt_load('relanoiborra2019', 'single_150_SentArray22kHz_varLength.mat');
sentenceArray = data.sentenceArray;
amt_disp(['start Jetal2013: ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
sentenceFileLevel = -26;
%noise_names = {'SSN_CLUE_22kHz.wav','SSN_MOD_CLUE','ISTS_eq'};stimuli
%not available
noise_names = 'SSN_CLUE_22kHz.wav';
speechSPL = 65;
fixedNoiseLevel = 0;
SNRs = -27:3:3;
conditions = {'SSN' 'SAM' 'ISTS'};
IOparameters = [0.61 0.5 8000 0.6]; %
for q = 1:NSpeechsamples
x = sentenceArray{q}';
fs = 22050;
x = x*10^((speechSPL-sentenceFileLevel)/20);
% the level of the sentence is set such that the long-term RMS of all
% sentences are presented at a level of 65 dB SPL.
Ts = 1/fs;
T = length(x)/fs;
t = 0:Ts:T;
t = t(1:end-1);
N = length(t);
% load the noise files
for k = 1:length(noise_names)
clear tmp tmp2
%[tmp, fs] = audioread (noise_names{k});
[tmp, fs] = amt_load('relanoiborra2019', noise_names);
%if fs_tmp ~= fs
% noise_scaled{k} = resample(tmp,fs,fs_tmp);
%else
noise_scaled{k} = tmp;
%end
Nsegments = floor(length(noise_scaled{k})/N);
% pick a random segment
startIdx = randi(Nsegments-2 ,1)*N;
noise_glob{k} = noise_scaled{k}(startIdx:startIdx+N -1);
end
for n = 1:length(conditions)
for k = 1:length(SNRs)
noise = noise_glob{n};
noise = noise/rms(noise)*10^((speechSPL-SNRs(k))/20);
if size(noise) ~= size(x)
noise = noise';
end
test = noise + x;
tmp = joergensen2013(test,noise,fs,IOparameters);
SNRenvs(k,n,q) = tmp.SNRenv;
Pcorrect(k,n,q) = tmp.P_correct;
end
end
amt_disp(['sentence nr: ' num2str(q) ' ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
end
result.Pcorrect = Pcorrect;
result.SNRenvs = SNRenvs;
result.conditions =conditions;
result.SNRs =SNRs;
%% Average across speech samples
Pc_est_mean = mean(result.Pcorrect,3);
% ------------------ Estimating changes in SRTs based on the mean Pcorrect -------------
% The first column of Pc_est_mean should always be the reference
selection = 1:length(conditions);
[dSRT SRTs] = joergensen2011_pctodsrt(Pc_est_mean,result.SNRs,selection);
end
if flags.do_JandD2011specsub
%in the absence of the original stimuli - using those from joergensen2011 instead
data = amt_load('relanoiborra2019', 'single_150_SentArray22kHz_varLength.mat');
sentenceArray = data.sentenceArray;
amt_disp(['start JandD2011specsub: ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
sentenceFileLevel = -26;
noise_names = 'SSN_CLUE_22kHz.wav';
speechSPL = 65;
SNRs = -9:3:9;
conditions = [0 0.5 1 2 4 8];
IOparameters = [0.61 0.5 8000 0.6]; %
for q = 1:NSpeechsamples
k = 1;
x = sentenceArray{q}';
fs = 22050;
x = x*10^((speechSPL-sentenceFileLevel)/20);
% the level of the sentence is set such that the long-term RMS of all
% sentences are presented at a level of 65 dB SPL.
Ts = 1/fs;
T = length(x)/fs;
t = 0:Ts:T;
t = t(1:end-1);
N = length(t);
% load the noise file
clear tmp
%[tmp, fs] = audioread (noise_names);
[tmp, fs] = amt_load('relanoiborra2019', noise_names);
%if fs_tmp ~= fs
% noise_scaled = resample(tmp,fs,fs_tmp);
%else
noise_scaled = tmp;
%end
Nsegments = floor(length(noise_scaled)/N);
% pick a random segment
startIdx = randi(Nsegments-2 ,1)*N;
noise_glob = noise_scaled(startIdx:startIdx+N -1);
for n = 1:length(conditions)
for k = 1:length(SNRs)
noise = noise_glob;
noise = noise/rms(noise)*10^((speechSPL-SNRs(k))/20);
if size(noise) ~= size(x)
noise = noise';
end
test = noise + x;
% --------- spec sub -----------------
W=1024/2; % frame length
padz=1024/2; %zero padding (pad with padz/2 from the left and padz/2 from the right )
% % Note that (W+padz) is the final frame window and hence the fft length (it is normally chose as a power of 2)
SP=0.5; %Shift percentage is 50%
factor = conditions(n);
ProcMix = joergensen2011_specsub(test,noise,W,padz,SP,factor);
ProcMixInv = joergensen2011_specsub(x-noise,-noise,W,padz,SP,factor);
% Estimating the noise alone using the approach by Hagerman and Olofsson (2004)
NoiseEst = (ProcMix - ProcMixInv)/2;
test = ProcMix(1.5*W:N); %cutting off first and last bit
noise = NoiseEst(1.5*W:N);
% -----------------------------
tmp = joergensen2013(test,noise,fs,IOparameters);
SNRenvs(k,n,q) = tmp.SNRenv;
Pcorrect(k,n,q) = tmp.P_correct;
end
end
amt_disp(['sentence nr: ' num2str(q) ' ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
end
result.Pcorrect = Pcorrect;
result.SNRenvs = SNRenvs;
result.conditions =conditions;
result.SNRs =SNRs;
%% Average across speech samples
Pc_est_mean = mean(result.Pcorrect,3);
% ------------------ Estimating changes in SRTs based on the mean Pcorrect -------------
% The first column of Pc_est_mean should always be the reference
selection = 1:length(conditions);
[dSRT SRTs] = joergensen2011_pctodsrt(Pc_est_mean,result.SNRs,selection);
end
if flags.do_JandD2011reverb
%in the absence of the original stimuli - using those from joergensen2011 instead
data = amt_load('relanoiborra2019', 'single_150_SentArray22kHz_varLength.mat');
sentenceArray = data.sentenceArray;
amt_disp(['start JandD2011reverb: ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
sentenceFileLevel = -26;
noise_name = 'SSN_CLUE_22kHz';
speechSPL = 65;
SNRs = -9:3:9;
conditions = [0 0.4 0.7 1.3 2.3];
IOparameters = [0.61 0.5 8000 0.6]; %
for q = 1:NSpeechsamples
x = sentenceArray{q}';
fs = 22050;
x = x*10^((speechSPL-sentenceFileLevel)/20);
% the level of the sentence is set such that the long-term RMS of all
% sentences are presented at a level of 65 dB SPL.
Ts = 1/fs;
T = length(x)/fs;
t = 0:Ts:T;
t = t(1:end-1);
N = length(t);
% load the noise file
noise_names = 'SSN_CLUE_22kHz.wav';
clear tmp
%[tmp, fs] = audioread (noise_names{k});
[tmp, fs] = amt_load('relanoiborra2019', noise_names);
% if fs_tmp ~= fs
% noise_scaled = resample(tmp,fs,fs_tmp);
% else
noise_scaled = tmp;
% end
Nsegments = floor(length(noise_scaled)/N);
% pick a random segment
startIdx = randi(Nsegments-2 ,1)*N;
noise_glob = noise_scaled(startIdx:startIdx+N -1);
for n = 1:length(conditions)
for k = 1:length(SNRs)
noise = noise_glob;
noise = noise/rms(noise)*10^((speechSPL-SNRs(k))/20);
if size(noise) ~= size(x)
noise = noise';
end
test = noise + x;
% % ------------ applying reverberation
if n>1
[tmp,Fs] = sig_joergensen2011(conditions(n));
tmp = resample(tmp,fs,Fs); % downsampling to 22.05 kHz
tmp_test = fconv(tmp',test); %
tmp_noise = fconv(tmp',noise);
test_env = abs(hilbert(tmp_test));
[bb, aa] = butter(4, 20*2/fs);
test_env = filter(bb,aa,test_env);
cut = 0.05;
threshold = floor(max(test_env)*cut);
% finding the index in the env vector corresponding to the
% threshold:
idx = find(test_env(floor(length(test_env)/4):end) > threshold, 1,'last' );
idx_end = idx + floor(length(tmp_test)/4);
test_env(idx_end);
idx_start = floor(0.047*fs);
test = tmp_test(idx_start:idx_end);
noise = tmp_noise(idx_start:idx_end);
end
% ---------------------------------
tmp = joergensen2013(test,noise,fs,IOparameters);
SNRenvs(k,n,q) = tmp.SNRenv;
Pcorrect(k,n,q) = tmp.P_correct;
end
end
amt_disp(['sentence nr: ' num2str(q) ' ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
end
result.Pcorrect = Pcorrect;
result.SNRenvs = SNRenvs;
result.conditions =conditions;
result.SNRs =SNRs;
%% Average across speech samples
Pc_est_mean = mean(result.Pcorrect,3);
% ------------------ Estimating changes in SRTs based on the mean Pcorrect -------------
% The first column of Pc_est_mean should always be the reference
selection = 1:length(conditions);
[dSRT SRTs] = joergensen2011_pctodsrt(Pc_est_mean,result.SNRs,selection);
end
%AMT: Stimuli for these last two not available
if flags.do_FP1990
amt_disp('amt warning: not enough data to calculate this.');
SRTs = [];
conditions = [];
% load PlompMimpen_130_SentArray22kHz
% amt_disp(['start FP1990: ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
% sentenceFileLevel = 10^((-17.93)/20);
% noise_names = {'MaleS00.wav','MaleF00.wav','P&MRunningSpeech_FemaleTR.wav'};
% conditions = {'SSN','SMN','RT'};
% SNRs = [ -21 -18 -12 -9 -6 -3 0 3];
% noisedBA = 80;
% fs = 22050;
% IOparameters = [0.36 0.5 8000 0.6]; %
%
% clear noise_scaled
% for k = 1:length(noise_names)
% clear tmp tmp2
% [tmp, fs] = audioread (noise_names{k});
% tmp = resample(tmp,fs,fs_tmp);
% tmp = tmp/rms(tmp);
% noise_scaled{k} = Leq2dBA(tmp,fs,noisedBA); %here, all noises have same level dBA
% noiseSPL_dBA(k) = LeqdBA(noise_scaled{k},fs);
% end
%
%
%
% for q = 1:NSpeechsamples
%
% x_unscaled = sentenceArray{q}';
%
%
% Ts = 1/fs;
% T = length(x_unscaled)/fs;
% t = 0:Ts:T;
% t = t(1:end-1);
% N = length(t);
%
% % load the noise files
% for k = 1:length(noise_names)
%
% Nsegments = floor(length(noise_scaled{k})/N);
% % pick a random segment
% startIdx = randi(Nsegments-2 ,1)*N;
%
% noise_glob{k} = noise_scaled{k}(startIdx:startIdx+N -1);
% end
%
%
%
% for n = 1:length(conditions)
%
% for k = 1:length(SNRs)
% noise = noise_glob{n};
% speech_dBA = (noisedBA+SNRs(k));
% SPL_sent(k) = 20*log10(rms(Leq2dBA(noise_scaled{1},fs,speech_dBA))); %#check!
% SpeechGain = 10^(SPL_sent(k)/20);
% x = x_unscaled ./ sentenceFileLevel *SpeechGain;
% SpeechSPL_dBA(k) = LeqdBA(x,fs);
%
% if size(noise) ~= size(x)
% noise = noise';
% end
% test = noise + x;
%
%
% tmp = joergensen2013(test,noise,fs,IOparameters);
% SNRenvs(k,n,q) = tmp.SNRenv;
% Pcorrect(k,n,q) = tmp.P_correct;
%
% end
%
% end
% amt_disp(['sentence nr: ' num2str(q) ' ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
%
% end
%
% result.Pcorrect = Pcorrect;
% result.SNRenvs = SNRenvs;
% result.conditions =conditions;
% result.SNRs =SNRs;
%
%
%
%
% %% Average across speech samples
% Pc_est_mean = mean(result.Pcorrect,3);
%
%
% % ------------------ Estimating changes in SRTs based on the mean Pcorrect -------------
% % The first column of Pc_est_mean should always be the reference
% selection = 1:length(conditions);
% [dSRT SRTs] = joergensen2011_pctodsrt(Pc_est_mean,result.SNRs,selection);
%
end
if flags.do_Kjems2009
amt_disp('amt warning: not enough data to calculate this.');
SRTs = [];
conditions = [];
% load DANTALE2_144single_SentArray44kHz_varLength
% amt_disp(['start Kjems2009: ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
% sentenceFileLevel = 10^((-19.79)/20);
% noise_names = {'ssn_noise_20k','cafe_noise_20k','car_noise_20k','Bottle_noise_20k'};
% fs = 22050;
% noisedBA = 65;
% SNRs = -30:3:10;
% conditions = {'SSN','Cafe','Car','Bottle'};
%
% IOparameters = [0.42 0.5 50 0.9]; %
% clear noise_scaled
%
% for k = 1:length(noise_names)
% [tmp, fs] = audioread (noise_names{k});
% tmp = resample(tmp,fs,fs_tmp);
% tmp = scaletodbspl(tmp,0);
% if k == 1
% [tmp GaindB]= Leq2dBA(tmp,fs,noisedBA); % the level in dBA is set for the SSN to 65
% end
% noise_scaled{k} = tmp/rms(tmp).*10^(GaindB/20); %here, all noises have same level in dB, thus different levels dBA!
% noiseSPL_dBA(k) = LeqdBA(noise_scaled{k},fs);
% end
%
% for q = 1:NSpeechsamples
%
% x_unscaled = sentenceArray{q}';
% x_unscaled = resample(x_unscaled,fs,44100);
%
% Ts = 1/fs;
% T = length(x_unscaled)/fs;
% t = 0:Ts:T;
% t = t(1:end-1);
% N = length(t);
%
% % load the noise files
% for k = 1:length(noise_names)
%
% Nsegments = floor(length(noise_scaled{k})/N);
% % pick a random segment
% startIdx = randi(Nsegments-2 ,1)*N;
%
% noise_glob{k} = noise_scaled{k}(startIdx:startIdx+N -1);
% end
%
% for n = 1:length(conditions)
%
% for k = 1:length(SNRs)
% noise = noise_glob{n};
% SpeechGain = 10^((GaindB + SNRs(k))/20);
%
% x = x_unscaled ./ sentenceFileLevel *SpeechGain;
% SpeechSPL_dBA(k) = LeqdBA(x,fs);
%
% if size(noise) ~= size(x)
% noise = noise';
% end
% test = noise + x;
%
% tmp = joergensen2013(test,noise,fs,IOparameters);
% SNRenvs(k,n,q) = tmp.SNRenv;
% Pcorrect(k,n,q) = tmp.P_correct;
%
% end
%
% end
% amt_disp(['sentence nr: ' num2str(q) ' ' datestr(now, 'dd-mm-yyyy HH:MM:SS')]);
%
% end
%
% result.Pcorrect = Pcorrect;
% result.SNRenvs = SNRenvs;
% result.conditions =conditions;
% result.SNRs =SNRs;
%
%
%
% %% Average across speech samples
% Pc_est_mean = mean(result.Pcorrect,3);
%
% % ------------------ Estimating changes in SRTs based on the mean Pcorrect -------------
% % The first column of Pc_est_mean should always be the reference
% selection = 1:length(conditions);
% [dSRT SRTs] = joergensen2011_pctodsrt(Pc_est_mean,result.SNRs,selection);
%
end
function [y]=fconv(h,x)
%FCONV Fast Convolution
% [y] = FCONV(h, x) convolves x and h. The output of this
% function is scaled.
%
% x = input vector
% h = input vector
%
% See also CONV
%
%Version 2.0
%2003-2004, Stephen G. McGovern
Ly=length(x)+length(h)-1; %
Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2 that is > Ly
m= max(abs(x));
X=fft(x, Ly2); % Fast Fourier transform
H=fft(h, Ly2); % Fast Fourier transform
Y=X.*H;
y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform
y=y(1:1:Ly); % Take just the first N elements
m=m/max(abs(y));
y=m*y;
function [ret Signalscale]=Leq2dBA(sig,Fs,dBA)
InSig=sig/rms(sig).*10^(dBA/20); % scale to dB SPL
x2=InSig;
[B,A] = adsgn(Fs); %
r=filter(B,A,InSig);
Laeq=20*log10(rms(r)); %dB(A)
Lleq=20*log10(rms(x2)); %dB
cor=Lleq-Laeq;
Signalscale=dBA+cor;
ret=InSig/rms(InSig).*10^(Signalscale/20);
function ret=LeqdBA(sig,Fs)
InSig=sig; % scale to dB SPL
[B,A] = adsgn(Fs);
r=filter(B,A,InSig);
ret=20*log10(rms(r)); %dB(A)
function [B,A] = adsgn(Fs)
% ADSGN Design of a A-weighting filter.
% [B,A] = ADSGN(Fs) designs a digital A-weighting filter for
% sampling frequency Fs. Usage: Y = FILTER(B,A,X).
% Warning: Fs should normally be higher than 20 kHz. For example,
% Fs = 48000 yields a class 1-compliant filter.
%
% Requires the Signal Processing Toolbox.
%
% See also ASPEC, CDSGN, CSPEC.
% Author: Christophe Couvreur, Faculte Polytechnique de Mons (Belgium)
% couvreur@thor.fpms.ac.be
% Last modification: Aug. 20, 1997, 10:00am.
% References:
% [1] IEC/CD 1672: Electroacoustics-Sound Level Meters, Nov. 1996.
% Definition of analog A-weighting filter according to IEC/CD 1672.
f1 = 20.598997;
f2 = 107.65265;
f3 = 737.86223;
f4 = 12194.217;
A1000 = 1.9997;
pi = 3.14159265358979;
NUMs = [ (2*pi*f4)^2*(10^(A1000/20)) 0 0 0 0 ];
DENs = conv([1 +4*pi*f4 (2*pi*f4)^2],[1 +4*pi*f1 (2*pi*f1)^2]);
DENs = conv(conv(DENs,[1 2*pi*f3]),[1 2*pi*f2]);
% Use the bilinear transformation to get the digital filter.
[B,A] = bilinear(NUMs,DENs,Fs);