THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.

View the help

Go to function

langendijk2002_spectralanalysis - FFT-based filter bank with constant relative bandwidth according

Program code:

function [cqmag,fc,cqmaghr,fvec] = langendijk2002_spectralanalysis( insig,varargin )
%langendijk2002_spectralanalysis FFT-based filter bank with constant relative bandwidth according
%   Usage:  [cqmag] = langendijk2002_spectralanalysis( insig )
%           [cqmag,fc,cqmaghr,fvec] = langendijk2002_spectralanalysis( insig,fs,flow,fhigh,bw )
%
%   Input parameters:
%      insig   : Impulse response or complex spectrum
%      fs      : Sampling rate, default is 48kHz.
%      flow    : Lowest frequency, minimum: 0.5kHz, default is 2kHz
%      fhigh   : Highest frequency, default is, default is 16kHz  
%      bw      : bandwidth, possible values 3,6,9,12, default is 6.
%
%   Output parameters:
%      cqmag   : mean magnitudes of CQ-bands in dB
%      fc      : center frequencies of bands (geo. mean of corners)
%      cqmaghr : same as cqmag but for all freq. bins (high resolution)
%      fvec    : freq. vector according to FFT-resolution
%
%   LANGENDIJK2002_SPECTRALANALYSIS(insig) approximates a constant-Q filter bank by averaging the
%   magnitude bins of a DFT. LANGENDIJK2002_SPECTRALANALYSIS results in 'bw' dB-magnitudes per octave.
%
%   References:
%     E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
%     sound localization. J. Acoust. Soc. Am., 112:1583--1596, 2002.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/langendijk2002_spectralanalysis.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
    
% AUTHOR : Robert Baumgartner, OEAW Acoustical Research Institute

definput.keyvals.fs=48000;
definput.keyvals.flow=2000;
definput.keyvals.fhigh=16000;
definput.keyvals.bw=6;

[flags,kv]  = ltfatarghelper({'fs','flow','fhigh','bw'},definput,varargin);


% input signal given in time or frequency domain?
if isreal(insig)    % -> TD
    nfft = 2^12;%max(2^12,size(insig,1));
    y = abs(fft(insig,nfft));
else                % -> FD
    y = abs(insig);
    nfft = size(insig,1);
end
fvec = 0:kv.fs/nfft:kv.fs-kv.fs/nfft;

octs = log2(kv.fhigh/kv.flow);    % # of octaves
jj = 0:octs*kv.bw; 
n = round(2.^((jj)/kv.bw)*kv.flow/kv.fs*nfft);       % startbins
fc = zeros(length(jj)-1,1);                       % center frequencies
cqmag = zeros(length(jj)-1,size(y,2),size(y,3));  % mean magnitudes of CQ-bands
cqmaghr = zeros(size(y));                         % same but for all freq. bins (high resolution)
for ind = jj(1)+1:jj(end)
    nj = n(ind+1)-n(ind);
    idn = n(ind):n(ind+1)-1;
    fc(ind) = sqrt(fvec(n(ind))*fvec(n(ind+1)));  % geometric mean
    cqmag(ind,:,:) = sqrt(1/(nj)*sum(y(idn,:,:).^2,1));
    cqmaghr(idn,:,:) = repmat(cqmag(ind,:,:),[length(idn),1,1]);
end

cqmag = 20*log10(cqmag);
cqmaghr(nfft/2+2:end,:,:) = cqmaghr(nfft/2:-1:2,:,:);
cqmaghr = 20*log10(cqmaghr);

end