function metric = mclachlan2021_metrics(doa)
%MCLACHLAN2021_METRICS - extract localization metrics
% Usage: metric = mclachlan2021_metrics(doa)
%
% Input parameters:
%
% doa : Struct returned from the mclachlan2021 model with
% estimated and real directions of arrival
%
% Output parameters:
%
% metric : metrics for evaluation of localisation
% performance
%
% .reversal_fb : Percentage of front-back reversals, omitting
% small errors occurring within 10 degrees of the
% plane dividing the hemifields
% .reversal_ud : Percentage of up-down reversals, omitting
% small errors occurring within 10 degrees of the
% plane dividing the hemifields
% .rmsL : Lateral root mean squared error
% .rmsP : Polar root mean squared error, omitting reversals
% and restricted to directions within 35 degrees of
% the vertical midline
%
%
% MCLACHLAN2021_METRICS(...) returns psychoacoustic performance
% parameters for experimental response patterns.
% doa is a struct where actual and estimated directions of arrival must
% be provided.
%
% See also: demo_mclachlan2021 mclachlan2021
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/mclachlan2021_metrics.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% References: reijniers2014 schonstein2008comparison
% AUTHOR: Glen McLachlan (adapted from code provided by Michael Sattler and Roberto Barumerli)
% real doa, in spherical and lat-pol coordinates
sph_real = SOFAconvertCoordinates(doa.real, 'cartesian', 'spherical');
[lat_real,pol_real]=sph2horpolar(sph_real(:,1),sph_real(:,2));
doa.est = squeeze(doa.est);
if size(doa.est, 3) ~= 1 % remove third dimension relative to repetition of experiments
num_exp = size(doa.est, 2);
doa_est = [];
for i = 1:size(doa.est, 2)
est = squeeze(doa.est(:,i,:));
doa_est = [doa_est; est];
end
else
if(size(doa.est, 1) == num_dirs)
num_exp = 1;
else
num_exp = size(doa.est, 1);
end
doa_est = doa.est;
end
% mean estimated doa over all experiments, in spherical and lat-pol coordinates
sph_est = SOFAconvertCoordinates(doa_est, 'cartesian', 'spherical');
[lat_est,pol_est] = sph2horpolar(sph_est(:,1),sph_est(:,2));
% matrix of all doas
m = zeros(size(sph_real, 1)*num_exp, 14);
m(:, 1:2) = repmat(sph_real(:, [1 2]), num_exp, 1); % spherical real
m(:, 3:4) = sph_est(:, [1 2]); % spherical estimate
m(:, 5:6) = repmat([lat_real,pol_real], num_exp, 1); % lat-pol real
m(:, 7:8) = [lat_est,pol_est]; % lat-pol estimate
m(:, 9:11) = repmat(doa.real(:,1:3),num_exp, 1); % cartesian real
m(:, 12:14) = doa_est(:,1:3); % cartesian estimate
% ensure real values, as sph2horpolar can return complex numbers
% due to numerical approximations
m = real(m);
num_dirs = size(doa.real,1);
%% metrics
% lateral RMS
metric.rmsL=sqrt(sum((mynpi2pi(m(:,7)-m(:,5))).^2)/num_dirs);
% percentage of quadrant errors according to Schonstein et al. (2008)
idx_fb = find(acos(sum(m(:,9:11).*m(:,12:14),2))>... % fb reversals
acos(sum([-m(:,9) m(:,10) m(:,11)].*m(:,12:14),2))...
& (abs(m(:,6))<80 | (m(:,6)>100 & m(:,6)<260))); % drop dirs near midline
idx_ud = find(acos(sum(m(:,9:11).*m(:,12:14),2))>... % ud reversals
acos(sum([m(:,9) m(:,10) -m(:,11)].*m(:,12:14),2))...
& ((abs(m(:,6))>10 & m(:,6)<170)| m(:,6)>190)); % drop dirs near midline
idx = find(abs(m(:,5))<=35); % ignore 10 degrees around interaural axis
idx_fbm = intersect(idx,idx_fb);
idx_udm = intersect(idx,idx_ud);
metric.reversal_fb = size(idx_fbm,1)*100/num_dirs; %percent fb reversals
metric.reversal_ud = size(idx_udm,1)*100/num_dirs; %percent ud reversals
% polar RMS excluding quadrant errors and 10 degrees around interaural axis
m_rmsP = m;
m_rmsP([idx_fb; idx_ud],:) = [];
idx = abs(m_rmsP(:,5))<=35; % ignore 10 degrees around interaural axis
m_rmsP = m_rmsP(idx,:);
metric.rmsP=sqrt(sum((mynpi2pi(m_rmsP(:,8)-m_rmsP(:,6))).^2)/size(m_rmsP,1));
%% PLOTS
pol_err = abs(mynpi2pi(m(:,8)-m(:,6))); % plottable polar error
lat_err = abs(mynpi2pi(m(:,7)-m(:,5))); % plottable lateral error
% plottable reversals, omitting dirs near midline
n_fb = zeros(size(m,1),1);
n_ud = zeros(size(m,1),1);
n_fb(idx_fb) = 1;
n_ud(idx_ud) = 1;
n_fb = sum(reshape(n_fb,num_dirs,num_exp),2)*100/num_exp; % front-back
n_ud = sum(reshape(n_ud,num_dirs,num_exp),2)*100/num_exp; % up-down
plot_reijniers2014(doa.real,lat_err); % plot lateral error
plot_reijniers2014(doa.real,pol_err); % plot polar
plot_reijniers2014(doa.real,n_fb); % plot fb errors
title('Percentage of front-back reversals');
caxis([0 50]);
plot_reijniers2014(doa.real,n_ud); % plot ud errors
title('Percentage of up-down reversals');
caxis([0 50]);
end
function out_deg=mynpi2pi(ang_deg)
ang=ang_deg/180*pi;
out_rad=sign(ang).*((abs(ang)/pi)-2*ceil(((abs(ang)/pi)-1)/2))*pi;
out_deg=out_rad*180/pi;
end