function [dtf,ctf]=hrtf2dtf(hrtf,gate,f1,f2,fs)
% HRTF2DTF extracts dtf [and ctf] out of hrtf data
%
% Usage: [dtf,ctf]=hrtf2dtf(hrtf)
% [dtf,ctf]=hrtf2dtf(hrtf,gate)
% [dtf,ctf]=hrtf2dtf(hrtf,gate,f1,f2,fs)
%
% Input parameters:
% hrtf: complete hrtf data in ARI format (hM)
% gate: optional string for defining bounds of ctf division
% 'full' -> no bounds
% 'bounds' -> define bounds in f1 and f2
% otherwise 60dB bounds will be calculated
% f1: lower frequency bound
% f2: upper frequency bound
% fs: sampling frequency; default: 48kHz
%
% Output parameters:
% dtf: directional transfer function
% ctf: common transfer function (similar for all source positions)
%
% Derives the directional transfer function from a set of HRTFs.
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/common/hrtf2dtf.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Robert Baumgartner, OEAW Acoustical Research Institute
% latest update: 2010-08-12
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% default settings
if ~exist('gate','var')
gate='auto';
end
if ~exist('fs','var')
fs=48000;
end
% ctf calculation
n=size(hrtf,1);
hrtff=fft(hrtf);
ctff=mean(20*log10(hrtff),2);
switch gate
case 'full'
idx=1:round(size(ctff,1)/2);
case 'bounds'
id1=round(n*f1/fs);
id2=round(n*f2/fs);
idx=id1:id2;
case 'auto'
idx=find(mean(abs(ctff),3) <= min(mean(abs(ctff),3))+60);
idx=idx(1:round(length(idx)/2)); % positiv frequency part
end
ctff=10.^(ctff(:,:,:)/20);
% minimal phase
for ch=1:size(ctff,3)
% decompose signal
amp=abs(squeeze(ctff(:,1,ch)));
anu=-imag(hilbert(log(amp))); % minimal phase
an=anu-round(anu/2/pi)*2*pi; % wrap around +/-pi: wrap(x)=x-round(x/2/pi)*2*pi
ctff(:,1,ch)=amp.*exp(1i*an);
end
% extracting positiv frequency part
ctff=ctff(1:round(n/2),:,:);
hrtff=hrtff(1:round(n/2),:,:);
% dtf calculation
dtff=hrtff;
for jj=1:length(idx)
nn=idx(jj);
for ii=1:size(dtff,2)
for ch=1:2
dtff(nn,ii,ch)=hrtff(nn,ii,ch)./ctff(nn,1,ch);
end
end
end
ltfatstart;
dtf=ifftreal(dtff,n);
ctf=ifftreal(ctff,n);
if size(ctf,1)>=240
ctf=ctf(1:240,:,:); % rect windowing
end
end