function data = data_vliegen2004
%DATA_VLIEGEN2004 experimental results from vliegen2004level for stimulus duration of 3 msec
% Usage: data = data_vliegen2004
%
% Output parameters:
% data.id : listener identification
% data.SL : probed sensation level
% data.pgf : polar angle gain for the front
% data.var : polar angle gain for the front
%
% DATA_VLIEGEN2004 returns listeners' polar angle gains obtained in
% free-field localization experiments with 3-ms long stimuli Data was retrieved from
% TAB.I, FIG.6, and FIG.7 in Vliegen & van Opstal (2004) Six listeners were tested
%
% References:
% J. Vliegen and A. J. Van Opstal. The influence of duration and level on
% human sound localization. jasa, 115(1705), 2004.
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/data/data_vliegen2004.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner
%%
SPL = [33 43 53 58 63 68 73]; % data from session 2 and 3
data(1).id = 'JV';
data(1).SPL = SPL;
data(1).SL2SPL = 23; % data from Tab. I
data(1).SL = SPL - data(1).SL2SPL;
data(1).var = [20.4545 15.9091 7.7273 7.2727 11.8182 7.2727 10.0000];
data(1).pgf = [0.3200 0.6800 0.7200 0.7400 0.6400 0.5600 0.5200];
data(2).id = 'MW';
data(2).SPL = SPL;
data(2).SL2SPL = 30;
data(2).SL = SPL - data(2).SL2SPL;
data(2).var = [13.6364 9.5455 8.6364 15.4545 10.9091 12.7273 16.3636];
data(2).pgf = [0.3000 0.4800 0.4400 0.7200 0.4400 0.5600 0.4200];
data(3).id = 'HV';
data(3).SPL = SPL;
data(3).SL2SPL = 31;
data(3).SL = SPL - data(3).SL2SPL;
data(3).var = [14.5455 12.7273 13.6364 10.9091 11.8182 12.7273 15.4545];
data(3).pgf = [0.5600 0.4800 0.5400 0.7200 0.7200 0.6400 0.6000];
data(4).id = 'MZ';
data(4).SPL = SPL;
data(4).SL2SPL = 27;
data(4).SL = SPL - data(4).SL2SPL;
data(4).var = [15.9091 13.1818 13.6364 14.0909 9.5455 9.0909 9.0909];
data(4).pgf = [0.1400 0.3600 0.5600 0.6200 0.5200 0.5800 0.5200];
data(5).id = 'WV';
data(5).SPL = SPL;
data(5).SL2SPL = 25;
data(5).SL = SPL - data(5).SL2SPL;
data(5).var = [14.5455 8.1818 5.4545 7.2727 7.7273 11.3636 8.1818];
data(5).pgf = [0.3600 0.5200 0.5200 0.6000 0.4200 0.4400 0.4000];
data(6).id = 'FW';
data(6).SPL = SPL;
data(6).SL2SPL = 31;
data(6).SL = SPL - data(6).SL2SPL;
data(6).var = [14.5455 12.7273 10.9091 13.6364 10.4545 12.2727 13.1818];
data(6).pgf = [0.2000 0.3400 0.3200 0.5400 0.2600 0.3600 0.1800];
%% Plot
%
% figure
% for ii = 1:length(data)
% subplot(3,2,ii)
% plot(data(ii).SL,data(ii).pgf,'ko-')
% hold on
% axis([1 69 0 1.2])
% axis square
% text(55,1,data(ii).id)
% xlabel('SL (dB)')
% ylabel('Elevation gain')
% end
%
% figure
% for ii = 1:length(data)
% subplot(3,2,ii)
% plot(data(ii).SL,data(ii).var,'ko-')
% hold on
% axis([1 52 0 25])
% axis square
% text(40,20,data(ii).id)
% xlabel('SL (dB)')
% ylabel('Response variability (deg)')
% end
end