%DEMO_VERHULST2018 Demo of the auditory brainstem model described by Verhulst et al (2018)
%
% This script computes the responses to one click of single polarity.
%
% The following figures are obtained:
%
% Fig. 1: Characteristic frequencies of equidistant points along the cochlea.
%
% Fig. 2: Ear-canal pressure signals that can be used to simulate
% otoacoustic emissions (see also demo_verhulst2012.m).
%
% Fig. 3: Simulated basilar membrane velocity (v) or inner-hair-cell
% voltage (vihc).
%
% Fig. 4: Simulated unit responses to HSR, MSR, LSR neurons, auditory
% nerve responses, and cochlear nucleus (CN) and inferior
% colliculus (IC) neurons.
%
% Fig. 5: Population responses waave I, III, V, and envelope following
% responses.
%
% The current demo is based on the scripts ExampleSimulation.m and
% ExampleAnalysis_function.m from https://github.com/HearingTechnology/Verhulstetal2018Model
%
% License:
% --------
%
% This model is licensed under the UGent Academic License. Further usage details are provided
% in the UGent Academic License which can be found in the AMT directory "licences" and at
% <https://raw.githubusercontent.com/HearingTechnology/Verhulstetal2018Model/master/license.txt>.%
%
% Figure 1: Characteristic frequencies of equidistant points along the cochlea.
%
% Figure 2: Ear-canal pressure signals that can be used to simulate otoacoustic emissions.
%
% Figure 3: Simulated basilar membrane velocity (v) or inner-hair-cell voltage (vihc).
%
% Figure 4: Simulated unit responses to HSR, MSR, LSR neurons, auditory nerve responses, and cochlear nucleus (CN) and inferior colliculus (IC) neurons.
%
% Figure 5: Population responses waave I, III, V, and envelope following responses.
%
% See also: verhulst2018, verhulst2012
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/demos/demo_verhulst2018.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #License: ugent
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal PYTHON C
% #Author: Alejandro Osses (2020): primary implementation based on https://github.com/HearingTechnology/Verhulstetal2018Model
% #Author: Piotr Majdak (2021): adaptations for the AMT 1.0
%%% Generic model configuration:
fc_flag='all'; % 1000 cochlear sections
% fc_flag = 'half'; % for 500 cochlear sections
% fc_flag = 'abr'; % for 401 cochlear sections
numH = 13; % Nr. of high-spontaneous rate neurons to be simulated (default=13)
numM = 3; % Nr. of middle-spontaneous rate (default=3)
numL = 3; % Nr. of low-spontaneous rate (default=3)
freq2show = 1000;
%%% Stimulus generation:
fs = 100e3; % 100 kHz, sampling frequency
dt = 1/fs;
L = [40 70 100]; % dB SPL, three stimulus levels, you can add/remove levels here
p0 = 2e-5; % Pa, reference pressure
dur = 50e-3; % 50 ms, stimulus duration
dur_click = 100e-6; % 100 us, click duration
dur_click_samples = round(dur_click*fs); % click duration in samples
t = 0:dt:dur-dt;
N_samples = length(t);
N_levels = length(L);
insig=zeros(N_samples,N_levels); % Memory allocation. Each column is one test signal
for j=1:N_levels
L_in_dB_peSPL = p0*10^(L(j)/20)*sqrt(2)*2; % conversion from dB to dB peSPL
insig(10:10+dur_click_samples,j)=L_in_dB_peSPL; % one (positive) polarity click
end
%%% End Stimulus generation
%% set synaptopathy and store the results
% decide which responses you want to store:
% e= emission
% v= velocity
% i=ihc
% h=hsr
% m=msr
% l=lsr
% b=summed AN responses for each CF as well as CN and IC responses
% w=population response waves I, III, V
%% start the simulation
output = verhulst2018(insig,fs,fc_flag, ...
'v','oae','anfH','anfM','anfL',... % model flags, specify the required output
'numH',numH,'numM',numM,'numL',numL); % number of AN fibres
cf = output(1).cf; % characteristic frequencies of the simulated cochlear sections
N_CFs = length(cf);
%%%% Figure 1" CF=output.cf;
% cf is sorted in a base-to-apex (from high-to-low frequencies):
figure(1)
plot(cf), hold on
xlabel('Cochlear Channel Number [-]')
ylabel('Characteristic Frequency [Hz]')
%%%
fs_bm = output.fs_bm; %the sampling frequency of BM, OAE and IHC are higher to avoid numerical errors (see Altoe et al., 2014 JASA)
fs_an = output.fs_an; %the sampling frequency of AN, CN, IC and waves are 5 times lower
N_samples_an = size(output(1).an_summed,1);
t_an = [0:N_samples_an-1]/fs_an; % time after the AN. By default is a decimated version of t_bm
f = 0:fs_bm/N_samples:fs_bm-1/N_samples; % Frequency if FFT to v_BM is assessed
% Pick a channel number to plot results from. The CF corresponding to the
% channel number depends on whether you chose 'all', 'half' or 'abr':
idx_bin = find(freq2show < cf, 1,'last'); % looks for bin that is at 'freq_to_show'
% Reorganisation of the data for easier processing:
oae=zeros(N_samples,N_levels);
v=zeros(N_samples,N_levels);
ihc=zeros(N_samples,N_levels);
vrms=zeros(1,N_CFs);
ihcrms=zeros(1,N_CFs);
for j=1:N_levels
oae(:,j) = output(j).oae(:);
v(:,j) = output(j).v(:,idx_bin);
ihc(:,j) = output(j).ihc(:,idx_bin);
vrms(j,:) = rms(output(j).v);
ihcrms(j,:) = rms(output(j).ihc);
end
%% Ear-canal pressure and Otoacoustic emissions (OAE):
% This figure is the ear-canal pressure.
% For OAE simulations:
% - To get the reflection-source OAE, do the following simulation (see
% also demo_verhulst2012.m):
% OAE_{reflections on}-OAE_{reflections off}
% - To get the distortion-source OAE, do a normalisation using a low level
% (linear) simulation that the reflections off
%%%% Figure 2
figure(2),
subplot(2,1,1)
plot(1000*t,oae), hold on
xlabel('Time [ms]'),ylabel('Ear Canal Pressure [Pa]'),
xlim([0 20]),
% ylim([-0.02 0.02]),
legend(num2str(L')),legend('boxoff')
subplot(2,1,2), % figure
plot(f/1000,20*log10(abs(fft(oae/p0)))); hold on
xlabel('Frequency [kHz]'),
ylabel('EC Magnitude [dB re p0]'),
xlim([0 12]),
legend(num2str(L')),
legend('boxoff')
%% v_bm and V_IHC
figure(3),
subplot(2,2,1),
plot(1000*t,v), hold on
xlabel('Time [ms]');
ylabel('v_{bm} [m/s]');
xlim([0 30]);
title(['CF of ',num2str(round(cf(idx_bin))),' Hz']);
legend(num2str(L'));
legend('boxoff');
subplot(2,2,2),
plot(cf/1000,20*log10(vrms)), hold on
xlabel('CF [kHz]');
ylabel('rms of v_{bm} [dB re 1 m/s]');
xlim([0 14]),
% ylim([max(max(20*log10(vrms)))-100 max(max(20*log10(vrms)))+10])
title(['Excitation Pattern'])
legend(num2str(L'));
legend('boxoff');
subplot(2,2,3),
plot(1000*t,ihc), hold on
xlabel('Time [ms]');
ylabel('V_{ihc} [V]');
xlim([0 30]);
title(['CF of ',num2str(round(cf(idx_bin))),' Hz']);
legend(num2str(L'));
legend('boxoff');
subplot(2,2,4),
plot(cf/1000,ihcrms), hold on
xlabel('CF [kHz]');
ylabel('rms of V_{ihc} [V]');
xlim([0 14]);
%ylim([max(max(20*log10(ihcrms)))-100 max(max(20*log10(ihcrms)))+10])
title('Excitation Pattern');
legend(num2str(L'));
legend('boxoff');
% Reorganisation of the data for easier processing
for j = 1:N_levels
HSR(:,j)=output(j).anfH(:,idx_bin);
MSR(:,j)=output(j).anfM(:,idx_bin);
LSR(:,j)=output(j).anfL(:,idx_bin);
AN(:,j)=output(j).an_summed(:,idx_bin);
CN(:,j)=output(j).cn(:,idx_bin);
IC(:,j)=output(j).ic(:,idx_bin);
W1(:,j)=output(j).w1(:);
W3(:,j)=output(j).w3(:);
W5(:,j)=output(j).w5(:);
EFR(:,j)=output(j).w1+output(j).w3+output(j).w5;
end
%single unit responses
figure(4),
subplot(3,2,1),
plot(1000*t_an,HSR), hold on
title(['CF of ',num2str(round(cf(idx_bin))),' Hz'])
xlim([0 20]);
xlabel('Time [ms]');
ylabel('HSR fiber [spikes/s]')
legend(num2str(L'));
legend('boxoff')
subplot(3,2,3),
plot(1000*t_an,MSR), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('MSR fiber [spikes/s]')
subplot(3,2,5),
plot(1000*t_an,LSR), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('LSR fiber [spikes/s]');
subplot(3,2,2),
plot(1000*t_an,AN), hold on
title(['CF of ',num2str(round(cf(idx_bin))),' Hz'])
xlim([0 20]);
xlabel('Time [ms]');
ylabel('sum AN [spikes/s]');
% Spikes summed across all fibers @ 1 CF
subplot(3,2,4),
plot(1000*t_an,CN), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('CN [spikes/s]')
subplot(3,2,6),
plot(1000*t_an,IC), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('IC [spikes/s]')
% Population responses
figure(5)
subplot(4,1,1),
plot(1000*t_an,1e6*W1), hold on
title('Population Responses summed across simulated CFs');
xlim([0 20]);
xlabel('Time [ms]');
ylabel('W-1 [\muV]');
legend(num2str(L'));
legend('boxoff')
subplot(4,1,2),
plot(1000*t_an,1e6*W3), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('W-3 [\muV]')
subplot(4,1,3),
plot(1000*t_an,1e6*W5), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('W-5 [\muV]');
subplot(4,1,4),
plot(1000*t_an,1e6*EFR), hold on
xlim([0 20]);
xlabel('Time [ms]');
ylabel('EFR [\muV]');
%%%%%%%%%%%%%%%%%
amt_disp(['Showing results for frequency of ' num2str(freq2show) ' Hz']);