This documentation page applies to an outdated AMT version (1.1.0). Click here for the most recent page.
function data = exp_hassager2016(varargin)
%EXP_HASSAGER2016 - Experiments of Hassager et al. (2016)
% Usage: data = exp_hassager2016(flag)
%
% EXP_HASSAGER2016(flag) reproduces figures of the study from
% Hassager et al. (2016).
%
% Optional fields of output data structure:
%
% '.contralateralGain'
% contralateral gain of binaural weighting function
%
%
% The following flags can be specified
%
% 'fig6' Reproduce Fig.6:
% The mean of the seven listeners' perceived sound source
% location (open symbols) as a function of the bandwidth factor
% and the corresponding model predictions (filled symbols).
% The model predictions have been shifted slightly to the right
% for a better visual interpretation. The error bars are one
% standard error of the mean.
%
% Requirements:
% -------------
%
% 1) SOFA API v0.4.3 or higher from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/...
%
% 3) Statistics Toolbox for Matlab (for some of the figures)
%
% Examples:
% ---------
%
% To display Fig.6 use :
%
% exp_hassager2016('fig6');
%
% References:
% H. G. Hassager, F. Gran, and T. Dau. The role of spectral detail in the
% binaural transfer function on perceived externalization in a
% reverberant environment. J. Acoust. Soc. Am., 139(5):2992--3000, 2016.
% [1]arXiv | [2]www: ]
%
% References
%
% 1. http://arxiv.org/abs/http://dx.doi.org/10.1121/1.4950847
% 2. http://dx.doi.org/10.1121/1.4950847
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/experiments/exp_hassager2016.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
definput.import={'amt_cache'};
definput.flags.type = {'fig6'};
definput.flags.plot = {'plot','no_plot'};
[flags,kv] = ltfatarghelper({},definput,varargin);
% if flags.do_missingflag
% flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
% sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
% error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
% end
if flags.do_fig6
azi = [0,50];
Pext_A = data_hassager2016;
B = Pext_A.B;
data = data_baumgartner2017;
data = data(1:5);
fs = data(1).Obj.Data.SamplingRate;
% Obj = SOFAload('BRIR_AllAbsorbers_OffCentre_Emitters1to64_front.sofa');
% Obj = SOFAload('dtf b_nh10.sofa');
% in = noise(fs/2,1,'white');
% [b,a]=butter(10,6000/fs,'low');
% in = filter(b,a,in);
fncache = 'hassager2016';
Pext = amt_cache('get',fncache,flags.cachemode);
if isempty(Pext)
Pext = nan(length(B),length(data),length(azi));
for isubj = 1:length(data)
Obj = data(isubj).Obj;
for iazi = 1:length(azi)
% templateSound = SOFAspat(in,Obj,azi(iazi),0);
idazi = Obj.SourcePosition(:,1) == azi(iazi) & Obj.SourcePosition(:,2) == 0;
template = squeeze(shiftdim(Obj.Data.IR(idazi,:,:),2));
for iB = 1:length(B)
amt_disp(num2str(iB),'volatile');
if isnan(B(iB))
target = template;
else
Obj_tar = sig_hassager2016(Obj,B(iB));
target = squeeze(shiftdim(Obj_tar.Data.IR(idazi,:,:),2));
end
% plotfftreal(iB*db2mag(10)*fftreal(target(:,1)),fs,'flog'); hold on
Pext(iB,isubj,iazi) = hassager2016(target,template,'fs',fs);
end
end
amt_disp([num2str(isubj),' of ',num2str(length(data)),' subjects completed.']);
end
amt_cache('set',fncache,Pext);
end
%% Output
for isub = 1:length(data)
data(isub).Externalization = squeeze(Pext(:,isub,:));
data(isub).BandwidthFactor = B;
data(isub).Azimuth = azi;
end
%%
if flags.do_plot
BplotTicks = logspace(log10(0.25),log10(64),9);
BplotTicks = round(BplotTicks*100)/100;
BplotStr = ['Ref.';num2str(BplotTicks(:))];
BplotTicks = [BplotTicks(1)/2,BplotTicks];
B(1) = B(2)/2; % just for illustration
figure
symb = {'-ko','-k^'};
for iazi = 1:length(azi)
subplot(1,2,iazi)
h(1) = plot(B,Pext_A.rating(:,iazi),symb{iazi});
set(h(1),'MarkerFaceColor','w')
hold on
h(2) = errorbar(B*1.1,mean(Pext(:,:,iazi),2),std(Pext(:,:,iazi),0,2)/sqrt(length(data)),symb{iazi});
set(h(2),'MarkerFaceColor','k')
set(gca,'XTick',BplotTicks,'XTickLabel',BplotStr,'XScale','log')
axis([BplotTicks(1)/1.5,BplotTicks(end)*1.5,0.8,5.2])
xlabel('Bandwidth Factor [ERB]')
ylabel('Mean Externalization Rating')
title([num2str(azi(iazi)),'\circ'])
grid on
leg = legend({'dir - data','dir - pred'},'Location','southwest');
end
end
end
end