function output = exp_jelfs2011(varargin)
%EXP_JELFS2011 Figures from Jelfs et al. (2011)
% Usage: output = exp_jelfs2011(flag);
%
% EXP_JELFS2011 reproduces result from the paper Jelfs et al. (2011).
%
% The following flags can be specified;
%
% 'plot' plot the output of the experiment. This is the default.
%
% 'no_plot' Don't plot, only return data.
%
% 'fig4' Reproduce Fig. 4. The generated data is compared against
% data from Hawley et at. (2004).
%
% Examples:
% ---------
%
% To display Figure 4 use :
%
% exp_jelfs2011('fig4');
%
% See also: jelfs2011, culling2004
%
% References:
% S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a
% binaural model for speech intelligibility in noise. Hearing Research,
% 2011.
%
% M. Hawley, R. Litovsky, and J. Culling. The benefit of binaural hearing
% in a cocktail party: Effect of location and type of interferer. J.
% Acoust. Soc. Am., 115:833--843, 2004.
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/experiments/exp_jelfs2011.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% TODO: Extract the human data from this function and put it into a
% dedicated function, either data_jelfs2011 or data_hawley2004
definput.flags.type={'fig4'};
definput.flags.plot={'plot','no_plot'};
[flags,kv] = ltfatarghelper({},definput,varargin);
if flags.do_fig4
bin_data = [-3.5 -10 -12.5 -10.5 -1.25 -2.25 -8 -7.25 1.5 0 -4.5 -5.5];
mon_data = [-3.4688 -0.2813 -8.9063 -6.9375 -0.9063 0.9375 -5.2813 -4.1563 1.1875 1.2813 -2.7813 -1.9688 ];
offset = [0 0 0 0 3.01 3.01 3.01 3.01 4.77 4.77 4.77 4.77]';
bSNR = zeros(12,3);
database = 'kemar';
mode = 'both';
bSNR(1,:) = jelfs2011({0,database},{[0],database},mode);
bSNR(2,:) = jelfs2011({0,database},{[330],database},mode);
bSNR(3,:) = jelfs2011({0,database},{[60],database},mode);
bSNR(4,:) = jelfs2011({0,database},{[90],database},mode);
bSNR(5,:) = jelfs2011({0,database},{[0 0],database},mode);
bSNR(6,:) = jelfs2011({0,database},{[330 90],database},mode);
bSNR(7,:) = jelfs2011({0,database},{[60 90],database},mode);
bSNR(8,:) = jelfs2011({0,database},{[90 90],database},mode);
bSNR(9,:) = jelfs2011({0,database},{[0 0 0],database},mode);
bSNR(10,:) = jelfs2011({0,database},{[330 60 90],database},mode);
bSNR(11,:) = jelfs2011({0,database},{[30 60 90],database},mode);
bSNR(12,:) = jelfs2011({0,database},{[90 90 90],database},mode);
predictions1 = -bSNR(:,1)+offset;
mode = 'left';
bSNR(1,:) = jelfs2011({0,database},{[0],database},mode);
bSNR(2,:) = jelfs2011({0,database},{[330],database},mode);
bSNR(3,:) = jelfs2011({0,database},{[60],database},mode);
bSNR(4,:) = jelfs2011({0,database},{[90],database},mode);
bSNR(5,:) = jelfs2011({0,database},{[0 0],database},mode);
bSNR(6,:) = jelfs2011({0,database},{[330 90],database},mode);
bSNR(7,:) = jelfs2011({0,database},{[60 90],database},mode);
bSNR(8,:) = jelfs2011({0,database},{[90 90],database},mode);
bSNR(9,:) = jelfs2011({0,database},{[0 0 0],database},mode);
bSNR(10,:) = jelfs2011({0,database},{[330 60 90],database},mode);
bSNR(11,:) = jelfs2011({0,database},{[30 60 90],database},mode);
bSNR(12,:) = jelfs2011({0,database},{[90 90 90],database},mode);
predictions2 = -bSNR(:,1)+offset;
if flags.do_plot
figure;
hold all;
scatter(predictions1(1:4),bin_data(1:4),'or');
scatter(predictions2(1:4),mon_data(1:4),'ob');
scatter(predictions1(5:8),bin_data(5:8),'^r');
scatter(predictions2(5:8),mon_data(5:8),'^b');
scatter(predictions1(9:12),bin_data(9:12),'hr');
scatter(predictions2(9:12),mon_data(9:12),'hb');
line([-14,5],[-14,6],'LineStyle','--');
legend('1 int., Binaural',...
'1 int., Monaural',...
'2 int., Binaural',...
'2 int., Monaural',...
'3 int., Binaural',...
'3 int., Monaural',...
'Location','NorthWest');
xlabel('Observed SRT (dB)');
ylabel('Predicted SRT (dB)');
end;
output=[predictions1,predictions2];
end;