This documentation page applies to an outdated AMT version (1.1.0). Click here for the most recent page.
function [outsig, fc, mfc, params] = osses2021(insig, fs, varargin);
%OSSES2021 Monaural perceptual similarity
%
% Usage: [outsig, fc] = osses2021(insig,fs);
% [outsig, fc] = osses2021(insig,fs,...);
% [outsig, fc, params] = osses2021(insig,fs,...);
%
% Input parameters:
% insig : input acoustic signal.
% fs : sampling rate.
%
% OSSES2021(insig,fs) computes the internal representation of the
% signal insig sampled with a frequency of fs Hz.
%
% [outsig,fc,mfc]=OSSES2021(...) additionally returns the center
% frequencies of the filter bank and the center frequencies of the
% modulation filterbank.
%
% The model consists of the following stages:
%
% 1) an outer- and middle-ear filtering as used by Jepsen et al. 2008
%
% 2) a gammatone filter bank with 1-erb spaced filters.
%
% 3) an envelope extraction stage done by half-wave rectification
% followed by low-pass filtering to 770 Hz as used by Breebaart et al. 2001
%
% 4) an adaptation stage modelling nerve adaptation by a cascade of 5
% loops using a limiter factor of 5 (Osses and Kohlrausch, 2021).
%
% 5) a modulation filterbank
%
% Any of the optional parameters for AUDITORYFILTERBANK,
% IHCENVELOPE and ADAPTLOOP may be optionally specified for this
% function. They will be passed to the corresponding functions.
%
% See also: auditoryfilterbank, ihcenvelope, adaptloop, modfilterbank
% exp_osses2021 exp_osses2022 breebaart2001 lopezpoveda2001 dau1997
%
% References:
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. I. Detection and masking with narrow-band
% carriers. J. Acoust. Soc. Am., 102:2892--2905, 1997a.
%
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. II. Spectral and temporal integration. J.
% Acoust. Soc. Am., 102:2906--2919, 1997b.
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/models/osses2021.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: M-Signal
% #Author : Alejandro Osses.
% ------ Checking of input parameters ------------
if nargin<2
error('%s: Too few input arguments.',upper(mfilename));
end;
if ~isnumeric(insig)
error('%s: insig must be numeric.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
% load defaults from arg_auditoryfilterbank, arg_ihcenvelope, arg_adaptloop, arg_modfilterbank and arg_osses2021
definput.import={'auditoryfilterbank','ihcenvelope','adaptloop','modfilterbank','osses2021'};
definput.importdefaults={'afb_osses2021','ihc_breebaart2001', 'adt_osses2021','mfb_jepsen2008'};
definput.keyvals.subfs=[];
[flags,keyvals] = ltfatarghelper({'flow','fhigh'},definput,varargin);
fc = [];
mfc = [];
params = [];
% ------ do the computation -------------------------
insig = gaindb(insig,keyvals.dboffset-100); % from here on, the input signal is
% assumed to be at a dboffset of 100 dB (default AMT)
if flags.do_outerear
hp_fir = headphonefilter(fs);% Getting the filter coefficients at fs
N = ceil(length(hp_fir)/2); % group delay for a FIR filter of order length(hp_fir)
M = 1; % assumes insig is monaural
insig = [insig; zeros(N,M)]; % group delay compensation: step 1 of 2.
insig = filter(hp_fir,1,insig); % filtering
insig = insig(N+1:end,1:M); % group delay compensation: step 2 of 2
end
if flags.do_no_outerear
if keyvals.silent_mode == 0
%fprintf('\t%s: outer-ear filtering by-passed\n',upper(mfilename));
amt_disp([upper(mfilename),': outer-ear filtering by-passed']);
amt_disp();
end
end
if flags.do_middleear || flags.do_no_middleear
filtertype = 'lopezpoveda2001';
elseif flags.do_jepsen2008
filtertype = 'jepsen2008';
end
me_fir = middleearfilter(fs,filtertype);
me_gain_TF = max( 20*log10(abs(freqz(me_fir,1,8192))) ); % max of the filter response
if flags.do_middleear || flags.do_jepsen2008
N = ceil(length(me_fir)/2); % group delay for a FIR filter of order length(me_fir)
M = 1; % assumes insig is monaural
insig = [insig; zeros(N,M)]; % group delay compensation: step 1 of 2.
insig = filter(me_fir,1,insig); % filtering
insig = insig(N+1:end,1:M); % group delay compensation: step 2 of 2.
insig = gaindb(insig,-me_gain_TF); % if me_fir is a non-unit gain filter,
% the gain of the FIR filter is compensated.
if keyvals.silent_mode == 0
%fprintf('\t%s: middle-ear filter was adjusted to have a 0 dB bandpass gain (gain applied=%.1f dB)\n',upper(mfilename),-me_gain_TF);
amt_disp();
amt_disp([upper(mfilename),': middle-ear filter was adjusted to have a 0 dB bandpass gain (gain applied=',-me_gain_TF,' dB']);
amt_disp();
end
end
if flags.do_no_middleear
if keyvals.silent_mode == 0
%fprintf('\t%s: middle-ear filtering by-passed\n',upper(mfilename));
amt_disp();
amt_disp([upper(mfilename),': middle-ear filtering by-passed']);
amt_disp();
end
end
if flags.do_afb
% Apply the auditory filterbank
[outsig, fc] = auditoryfilterbank(insig,fs,'argimport',flags,keyvals);
end
if flags.do_no_afb
outsig = insig;
if keyvals.silent_mode == 0
%fprintf('\t%s: Gammatone filter bank by-passed\n',upper(mfilename));
amt_disp();
amt_disp([upper(mfilename),': Gammatone filter bank by-passed']);
amt_disp();
end
end
if flags.do_ihc || flags.do_adt || flags.do_mfb && ~flags.do_no_ihc
% 'haircell' envelope extraction
outsig = ihcenvelope(outsig,fs,'argimport',flags,keyvals);
else
if keyvals.silent_mode == 0
%fprintf('\t%s: ihcenvelope processing by-passed\n',upper(mfilename));
amt_disp();
amt_disp([upper(mfilename),': ihcenvelope processing by-passed']);
amt_disp();
end
end
if flags.do_adt || flags.do_mfb && ~flags.do_no_adt
% non-linear adaptation loops
outsig = adaptloop(outsig,fs,'argimport',flags,keyvals);
else
if keyvals.silent_mode == 0
%fprintf('\t%s: adaptation loops by-passed\n',upper(mfilename));
amt_disp();
amt_disp([upper(mfilename),': adaptation loops by-passed']);
amt_disp();
end
end
if flags.do_mfb
%% Downsampling (of the internal representations)
% Apply final resampling to avoid excessive data
if ~isempty(keyvals.subfs)
% In case of downsampling:
outsig = fftresample(outsig,round(length(outsig)/fs*keyvals.subfs));
subfs = keyvals.subfs;
else
% In case of no-resampling:
subfs = fs;
end
% Modulation filterbank
if nargout >= 4
[outsig,mfc,params] = modfilterbank(outsig,subfs,fc,'argimport',flags,keyvals);
else
[outsig,mfc] = modfilterbank(outsig,subfs,fc,'argimport',flags,keyvals);
end
end
if flags.do_no_mfb
if keyvals.silent_mode == 0
%fprintf('\t%s: modulation filter bank processing by-passed\n',upper(mfilename));
amt_disp();
amt_disp([upper(mfilename),': modulation filter bank processing by-passed']);
amt_disp();
end
end