This documentation page applies to an outdated AMT version (1.1.0). Click here for the most recent page.
function [varargout] = barumerli2021_metrics(varargin)
%barumerli2021_metrics - extract localization metrics
% Usage: [mean_error, bias] = barumerli2021_metrics(doa, parameters)
%
% Input parameters:
%
% doa: Struct in returned from the barumerli2021's model with
% estimated and real directions of arrival
%
% BARUMERLI2021_METRICS(...) returns psychoacoustic performance
% parameters for experimental response patterns.
% doa is a struct where actual and estimated directions of arrival must
% be provided. If no input params are provided the returned metrics
% resemble the ones provided in the original paper, see Reijiners et al. (2014).
% This script is a wrapper for localizationerror.
%
% If parameter is provided, barumerli2021_metric is a wrapper for localizationerror
% with the parameter as the localization error.
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/modelstages/barumerli2021_metrics.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% See also: demo_barumerli2021 barumerli2021 localizationerror
%
% References: katz2014
% Author: Roberto Barumerli
% Dept. of Information Engineering, University of Padova
% assert(isa(doa.coords, 'barumerli2021_coordinates') && isa(doa_real, 'barumerli2021_coordinates'), 'barumerli2021_metrics: parameters should be wrapped into the barumerli2021_coordinates class')
% assert(size(doa.estimations, 1) == doa_real.count_positions, 'barumerli2021_metrics: size mismatch')
% parameters
% empty plot stuff like reijniers with mean spherical error
% m, 'middle_metrics' return middlebrooks metrics as a struct
% doa, doa_real, 'm' return m matrix
% doa, doa_real, <error> compute error from localizationerror.m
% m, <error> as above
if strcmp(varargin{2}, 'middle_metrics')
assert(size(varargin{1}, 2) == 8, 'Please provide m matrix')
m = varargin{1};
% lateral_bias
exp.accL = localizationerror(m, 'accL');
% lateral_rms_error
exp.rmsL = localizationerror(m, 'rmsL');
% elevation_bias
exp.accP = localizationerror(m, 'accP');
% local_rms_polar
exp.rmsP = localizationerror(m, 'rmsPmedianlocal');
% quadrant_err
exp.querr = localizationerror(m, 'querrMiddlebrooks');
varargout{1} = exp;
elseif strcmp(varargin{3}, 'm')
assert(isfield(varargin{1}, 'estimations') & isa(varargin{2}, 'barumerli2021_coordinates'), 'If looking for m matrix please give doa as a struct and doa_real as barumerli2021_coordinates object(see barumerli2021)')
varargout{1} = local_returnmatrixlocalizationerror(varargin{1}, varargin{2});
else
if isfield(varargin{1}, 'estimations') && isa(varargin{2}, 'barumerli2021_coordinates')
m = local_returnmatrixlocalizationerror(varargin{1}, varargin{2});
errorflag = varargin{3};
elseif size(varargin{1}, 2) == 8
m = varargin{1};
errorflag = varargin{2};
else
error('something went wrong!')
end
[varargout{1}, meta, par] = localizationerror(m, errorflag);
if length(varargout) > 1
varargout{2}=meta;
end
if length(varargout) > 2
varargout{3}=par;
end
end
function m = local_returnmatrixlocalizationerror(doa, doa_real)
assert(size(doa.estimations, 3) == 3)
doa_est_cart = barumerli2021_coordinates(reshape(doa.estimations, [], 3), 'cartesian');
%% compute the metric relying on localizationerror.m
doa_real_sph = doa_real.return_positions('spherical');
doa_est_sph = doa_est_cart.return_positions('spherical');
doa_real_hor = doa_real.return_positions('horizontal-polar');
doa_est_hor = doa_est_cart.return_positions('horizontal-polar');
num_rep = size(doa_est_cart.pos, 1)/size(doa_real.pos, 1);
m = zeros(size(doa_real.pos, 1)*num_rep, 8);
m(:, 1:2) = repmat(doa_real_sph(:, [1 2]), num_rep, 1);
m(:, 3:4) = doa_est_sph(:, [1 2]);
m(:, 5:6) = repmat(doa_real_hor(:,[1 2]), num_rep, 1);
m(:, 7:8) = doa_est_hor(:, [1 2]);