function [waveVlat] = roenne2012_tonebursts(stim_level,varargin)
%roenne2012_tonebursts Simulate tone burst evoked ABR wave V latencies
% Usage: [waveVamp, waveVlat] = roenne2012_tonebursts(flag)
%
% Output parameters:
% waveVlat : Latency of simulated ABR wave V peak.
%
% ROENNE2012_TONEBURSTS(stim_level) simulates ABR responses to tone burst
% stimuli using the ABR model of Rønne et al. (2012) for a range of
% given stimulus levels.
%
% Fig. 5 of Rønne et al. (2012) can be reproduced. Simulations are
% compared to data from Neely et al. (1988) and Harte et al. (2009). Tone
% burst stimuli are defined similar to Harte et al. (2009). Tone burst
% center frequencies are: 1, 1.5, 2, 3, 6 and 8 kHz.
%
% The flag may be one of:
%
% 'plot' Plot main figure (fig 6 or 7).
%
% 'plot2' Plot extra figures for all individual simulations (3
% figures x stimulus levels x number of chirps).
%
% 'no_plot' Do not plot main figure (fig 6 or 7). This is the default.
%
% 'fig5' Plot Fig. 5 (Rønne et al., 2012). Latency of simulated ABR
% wave V's compared to Neely et al. (1988) and Harte et al.
% (2009) reference data.
%
% 'stim_level',sl Simulated levels. Default: Stimulus levels as
% chosen by Rønne et al. (2012), 40 to 100 dB pe SPL
% in steps of 10 dB.
%
% Example:
% --------
%
% Figure 5 of Roenne et al. (2012) can be displayed using:
%
% roenne2012_tonebursts(40:10:100,'plot');
%
% References:
% C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
% responses to different chirp stimuli at three levels of stimulation. J.
% Acoust. Soc. Am., 128(1):215--223, 2010.
%
% J. Harte, G. Pigasse, and T. Dau. Comparison of cochlear delay
% estimates using otoacoustic emissions and auditory brainstem responses.
% J. Acoust. Soc. Am., 126(3):1291--1301, 2009.
%
% F. M. Rønne, T. Dau, J. Harte, and C. Elberling. Modeling auditory
% evoked brainstem responses to transient stimuli. The Journal of the
% Acoustical Society of America, 131(5):3903--3913, 2012. [1]http ]
%
% M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
% in normal and impaired auditory nerve fibers: Model predictions of
% responses in cats. J. Acoust. Soc. Am., 122(1):402--417, jul 2007.
%
% References
%
% 1. http://scitation.aip.org/content/asa/journal/jasa/131/5/10.1121/1.3699171
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/modelstages/roenne2012_tonebursts.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
definput.flags.plot={'no_plot','plot','plot2'};
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Init
fsmod = 200000; % AN model fs
% length of modelling [ms]
modellength = 40;
% load Unitary Response
[ur,fs]=data_roenne2012;
% Output filter corresponding to recording settings (see Elberling et al
% 2010 section 3)
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;
% Center Frequencies of stimuli
CF = [1000, 1500, 2000, 3000 ,6000, 8000];
% Load tone burst stimuli, identical to Harte et al. (2009)
[Hartestim,fsstim] = data_harte2009;
%% ABR model
% Loop over stimulus levels
for L = 1:length(stim_level)
TB_lvl = stim_level(L);
% Loop over stimulus center frequencis
for F = 1:length(CF)
% Read tone burst of current CF
stimread=Hartestim.(['gp' num2str(CF(F))]);
stim = zeros(fsstim*modellength/1000,1);
% Create stimulus with tone burst and concatenated zeros =>
% combined length = "modellength"
stim(1:length(stimread)) = stimread;
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007(TB_lvl, stim, fsstim,fsmod);
% subtract 50 due to spontaneous rate
ANout = ANout-50;
% Sum in time across fibers, summed activity pattern
ANsum = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 32kHz
ANsum = resample(ANsum,fs,fsmod);
% Simulated potential = UR * ANsum (* = convolved)
simpot = filter(ur,1,ANsum);
% apply output filter similar to the recording conditions in
% Elberling et al. (2010)
simpot = filtfilt(b,a,simpot);
% Find max peak value (wave V)
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V)
waveVlat(F,L) = find(simpot == maxpeak);
%% PLOTS, extra plots created for all conditions used, i.e. three
% plots for each stimulus level x center frequency. If this
% is switched on and all other variables are set to default,
% 7 (levels) x 6 (CFs) x 3 (different figures) = 126 figures will
% be created
if flags.do_plot2
% Plot ABR (simpot)
t = 1e3.*[0:length(simpot)-1]./fs;
figure, plot(t-3.5,simpot,'k','linewidth',2)
xlabel('time [ms]'), set(gca, 'fontsize',12)
title(['Simulated ABR ( ' num2str(CF(F)) 'Hz,' num2str(TB_lvl) 'dB)'])
% PLOT ANgram
figure, set(gca, 'fontsize',12),imagesc(ANout),
title(['ANgram, level = ' num2str(TB_lvl) 'dB, CF = ' num2str(CF(F))])
ylabel('model CF'),xlabel('time [ms]'), xlabel('time [ms]')
set(gca,'YTick',[1 100 200 300 400 500]),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500])))
set(gca,'XTick',(700:500:10000)),
set(gca,'XTicklabel',(0:500:9500)/fsmod*1000-3.5)
colorbar
% PLOT ANURgram
figure,
ANUR = resample(ANout',fs,fsmod);
ANUR = filter(ur,1,ANUR);
imagesc(ANUR'),ylabel('model CF'),
set(gca,'YTick',[1 100 200 300 400 500]),xlabel('time [ms]'),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500]))),
set(gca,'XTick',(105:150:1500)),
set(gca,'XTicklabel',(0:150:1350)/fs*1000-3.5)
colorbar, title(['AN-UR gram, level = ' num2str(TB_lvl) 'dB, CF = ' num2str(CF(F))])
end
end
end
offset = 3.5 ; % stimuli delayed 3.5ms from start
waveVlat = waveVlat*1000/fs-offset;
if flags.do_plot
ClickLatency = roenne2012_click(stim_level);
figure;
plot_roenne2012toneburst(waveVlat,click_latency);
end