function out = sig_baumgartner2017looming(varargin)
% sig_baumgartner2017looming - flattens magnitude spectra of HRTFs
%
% Usage: Obj = sig_baumgartner2017looming(Obj,C,flow,fhigh)
% stim = sig_baumgartner2017looming(exp)
%
% Input parameters:
% Obj : reference SOFA object
% C : spectral contrast. 1 refers to reference (default),
% 0 to flat, -1 to flipped spectral magnitude
% flow : lower cut-off frequency in Hz. Default is 1 kHz.
% fhigh : higher cut-off frequency in Hz. Default is 18 kHz.
% Nfft : FFT length. Default is 1024.
% Ntrans: number of frequency bins used to softly transition the
% magnitude spectrum. Default is 10.
% delay : additional delay in ms to allow temporal dispersion in
% obtained impulse responses. Default is 0.
%
% Output parameters:
% Obj : modified SOFA object
% stim : stimulus structure containing subject ID (ID), sampling
% rate (fs), impulse responses (IR referring to contrasts
% C_IR), selected azimuths (azi), and stimuli of the
% selected experiment (cont for Exp. I; cont and discont
% for Exp. II; both referring to contrasts specified in C_pair).
%
% The exp flag may be used to get stimuli and impulse responses:
% 'exp1' Stimuli from Exp. I.
% 'exp2' Stimuli from Exp. II.
%
% Optional flags:
% 'soft' soft magnitude transition option for use with broadband stimuli
%
% SIG_BAUMGARTNER2017LOOMING either generates spectrally flattened HRTF
% representations as used by Baumgartner et al. (2017) in order to induce
% various degrees of sound externalization, or generates the signals
% presented to the listeners in one of the two experiments from
% Baumgartner et al. (2017) as specified by the exp flag.
%
% References:
% R. Baumgartner, D. K. Reed, B. Tóth, V. Best, P. Majdak, H. S. Colburn,
% and B. Shinn-Cunningham. Asymmetries in behavioral and neural responses
% to spectral cues demonstrate the generality of auditory looming bias.
% Proceedings of the National Academy of Sciences, 2017. [1]arXiv |
% [2]http ]
%
% References
%
% 1. http://arxiv.org/abs/http://www.pnas.org/content/early/2017/08/16/1703247114.full.pdf
% 2. http://www.pnas.org/content/early/2017/08/16/1703247114.abstract
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/signals/sig_baumgartner2017looming.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
% last modified: 5 Oct 2020, added soft magnitude transition option for use
% with broadband stimuli
definput.keyvals.Obj = [];
definput.keyvals.C = 1;
definput.keyvals.flow = 1e3;
definput.keyvals.fhigh = 16e3;
definput.keyvals.Nfft = 2^10;
definput.keyvals.Ntrans = 5; % number of frequency bins used to softly transition the magnitude spectrum
definput.keyvals.delay = 0; % in ms
definput.flags.experiment = {'hrtf','exp1','exp2'};
definput.flags.transition = {'hard','soft'};
definput.flags.source = {'noise','impulse'};
[flags,kv]=ltfatarghelper({'Obj','C','flow','fhigh'},definput,varargin);
%% Spectral contrast manipulation
if flags.do_hrtf
if isempty(kv.Obj)
error('Missing reference HRTF.')
end
out = kv.Obj;
fs = kv.Obj.Data.SamplingRate;
ref = shiftdim(kv.Obj.Data.IR,2);
hrtf = fftreal(ref,kv.Nfft);
freq = 0:fs/kv.Nfft:fs/2; % frequency vector
% following processing only done for dedicated frequency range
idf = freq >= kv.flow & freq <= kv.fhigh; % indices for dedicated frequency range
Nf = sum(idf); % # frequency bins
mag = db(abs(hrtf(idf,:,:))); % HRTF magnitudes in dB
idwf = idf(:) | circshift(idf(:),[1,0]); % include one neighbouring position for evaluation of frequency weighting
wf = diff(freqtoerb(freq(idwf))); % frequency weighting according to differentiated ERB scale
wf = repmat(wf(:)/sum(wf),[1,size(mag,2),size(mag,3)]);
meanmag = repmat(sum(wf.*mag,1),[Nf,1,1]);
varmag = mag - meanmag;
ph = angle(hrtf);
modmag = db(abs(hrtf));
if flags.do_soft
ramp = sin(linspace(0,pi/2,kv.Ntrans)).^2;
fader = [ramp,ones(1,Nf-2*kv.Ntrans),1-ramp]';
fader = repmat(fader,1,size(modmag,2), size(modmag,3));
modmag(idf,:,:) = (1-fader).*modmag(idf,:,:) + fader.*(meanmag + kv.C*varmag);
else
modmag(idf,:,:) = meanmag + kv.C*varmag;
end
mod = ifftreal(10.^(modmag/20).*exp(1i*ph),kv.Nfft);
mod = circshift(mod,kv.delay/1000*fs,1);
out.Data.IR = shiftdim(mod,1);
end
%% Stimuli from Exp. I % II
if flags.do_exp1 || flags.do_exp2
% ltfatsetdefaults('dbspl','dboffset',100); % PM: not needed.
% Individual data
data = data_baumgartner2017looming(flags.experiment); % for ID and azimuth
rawData = struct2cell(data.rawData);
subj = rawData(1,:);
azi = rawData(3,:);
hrtf = data_baumgartner2017looming('hrtf');
% Source signal
fadeDur = 0.05;
fs = hrtf(1).Obj.Data.SamplingRate;
long = noise(fs,1,'white'); % long stimulus for continuous trials
short = noise(0.5*fs,1,'white'); % short stimulus for discontinuous trials
% Fade in/out
sinRamp = sin(pi/2*(0:fadeDur*fs-1)/(fadeDur*fs)).^2;
long = long.*[sinRamp,ones(1,length(long)-2*length(sinRamp)),fliplr(sinRamp)]';
short = short.*[sinRamp,ones(1,length(short)-2*length(sinRamp)),fliplr(sinRamp)]';
% Band-pass filter
filtOrder = 4;
[b_bp,a_bp] = butter(filtOrder,[kv.flow,kv.fhigh]/(fs/2));
% Generate individual stimuli
C = 0:.5:1; % spectral contrasts
stim = struct;
for ss = 1:length(subj)
stim(ss).ID = subj{ss};
stim(ss).azi = azi{ss};
% Spectral flattening
stim(ss).fs = fs;
stim(ss).C_IR = C;
for ii = 1:length(C)
Obj = sig_baumgartner2017looming(hrtf(ss).Obj,C(ii),kv.flow,kv.fhigh);
idpos = Obj.SourcePosition(:,1) == azi{ss} & Obj.SourcePosition(:,2) == 0;
stim(ss).IR{ii} = squeeze(shiftdim(Obj.Data.IR(idpos,:,:),2));
stim(ss).short{ii} = SOFAspat(short,Obj,azi{ss},0);
stim(ss).long{ii} = SOFAspat(long,Obj,azi{ss},0);
end
% Band-pass filtering
for ii = 1:length(C)
stim(ss).IR{ii} = filter(b_bp,a_bp,stim(ss).IR{ii});
stim(ss).short{ii} = filter(b_bp,a_bp,stim(ss).short{ii});
stim(ss).long{ii} = filter(b_bp,a_bp,stim(ss).long{ii});
end
% Set level (adjust all stimuli by the same factor)
targetSPL = 70;
while any(max(stim(ss).long{ii}(:)) > 1) % avoid clipping
currentSPL = nan(length(C),2);
for ii = 1:length(C)
currentSPL(ii,:) = dbspl(stim(ss).long{ii});
end
adjustmentFactor = db2mag(targetSPL-mean(currentSPL(:)));
for ii = 1:length(C)
stim(ss).short{ii} = adjustmentFactor*stim(ss).short{ii};
stim(ss).long{ii} = adjustmentFactor*stim(ss).long{ii};
end
targetSPL = targetSPL - 3;
end
end
% Define combinations
NC = length(C);
if flags.do_exp1
iCpair = unique(nchoosek([1:NC,NC:-1:1], 2),'rows');
elseif flags.do_exp2
iCpair = [nchoosek(1:NC,2);nchoosek(NC:-1:1,2)];
end
Cpair = C(iCpair);
% Timings in sec
isi = 0.1; % inter-stimulus interval
dur = 1.2; % overall stimulus duration
xfade = 0.6; % timing of cross-fade
xfadeDur = 0.01; % duration of cross-fade
for ss = 1:length(subj)
stim(ss).C_pair = Cpair;
for ip=1:length(Cpair)
stim(ss).cont{ip} = SpExCue_crossfade(...
stim(ss).long{iCpair(ip,1)},stim(ss).long{iCpair(ip,2)},...
fs,dur,xfade,xfadeDur,true);
stim(ss).discont{ip} = [stim(ss).long{iCpair(ip,1)};zeros(isi*fs,2);stim(ss).long{iCpair(ip,2)}];
end
end
out = rmfield(stim,{'long','short'});
if flags.do_exp1
out = rmfield(out,'discont');
end
% ltfatsetdefaults('dbspl','dboffset',93.98); % PM: not needed.
end
end
function varargout = SpExCue_crossfade(sig1,sig2,fs,dur,tcross,durfade,fadeIOflag)
%SpExCue_crossfade creates cross-faded stimulus pair (cos^2 fade)
% Usage: [sigpair,nM2] = SpExCue_crossfade(sig1,sig2,fs,dur,tcross,durfade,fadeIOflag)
%
% Input parameters:
% sig1 : first stimulus (time in first dimension)
% sig2 : second stimulus (time in first dimension)
% fs : sampling rate of signals
% dur : overall duration of stimulus pair in sec
% tcross : center time of cross-fade in sec
% durfade : duration of fades (in and out) in sec
% fadeIOflag : flag to also fade paired signal in and out
%
% Output parameters:
% sigpair : cross-faded stimulus pair
% nM2 : index of center time of cross-fade
if not(exist('fadeIOflag','var'))
fadeIOflag = false;
end
n1 = length(sig1); % length of first input signal
n2 = length(sig2); % length of second input signal
ntotal = round(dur*fs); % total length of output signal
ncross = round(tcross*fs); % index of cross-fade center
nfade = 2*round(durfade*fs/2)-1; % closest odd # of time indices for fade
nstop1 = ncross+(nfade-1)/2; % offset index of first input signal
nstart2 = ncross-(nfade-1)/2; % onset index of second input signal
nsig2 = ntotal-nstart2+1; % length of second stimulus part
fadein = sin(0:pi/2/(nfade-1):pi/2);
fadeout = fliplr(fadein);
if n1 <= ncross % short signal -> no cross-fade
fadedsig1 = postpad(sig1,ntotal);
nsig2 = ntotal-ncross+1;
sig2 = postpad(sig2,nsig2);
fadedsig2 = cat(1,zeros(ncross-1,size(sig2,2)),sig2); % prepad
else % long signal -> cross-fade
fader1 = [ones(1,nstop1-nfade),fadeout];
fadedsig1 = sig1(1:nstop1,:).*repmat(fader1(:),1,2);
fadedsig1 = postpad(fadedsig1,ntotal);
fader2 = [fadein,ones(1,nsig2-nfade)];
fadedsig2 = sig2(n2-nsig2+1:n2,:).*repmat(fader2(:),1,2);
fadedsig2 = cat(1,zeros(nstart2-1,2),fadedsig2); % prepad
end
sigpair = fadedsig1 + fadedsig2;
if fadeIOflag
fader = [fadein,ones(1,ntotal-2*nfade),fadeout]';
sigpair = sigpair.*repmat(fader,[1,2]);
end
varargout{1} = sigpair;
if nargout == 2
varargout{2} = ncross;
end
end