This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
%DEMO_BAUMGARTNER2016 Demo for sagittal-plane localization model from Baumgartner et al. (2016)
%
% DEMO_BAUMGARTNER2016 demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% for a listener of the listener pool and the median plane using the
% sagittal-plane localization model from Baumgartner et al. (2016).
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener with outer-hair-cell dysfunction.
%
% See also: baumgartner2016 exp_baumgartner2016 baumgartner2014_virtualexp
% localizationerror
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/demos/demo_baumgartner2016.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
%% Settings
condition = 'baseline';
subID = 'NH33'; % subject ID of exemplary listener
lat = 0; % lateral target angle in degrees
SPL = 60; % SPL of target sound
runs = 1; % # of virtual experimental runs
cohc = 0.4; % outer-hair-cell dysfunction
do_plot = true; % flag for plotting predicted response PMVs
performanceMetric = 'querrMiddlebrooks';
%% Get listener's data
s = data_baumgartner2016; % load data of listener pool
ids = find(ismember({s.id},subID)); % index of exemplary listener
%% Run model
[err,pred,m] = baumgartner2016(s(ids).Obj,s(ids).Obj,'ID',subID,'Condition',condition,...
'lat',lat,'S',s(ids).S,'SPL',SPL,'cohc',cohc,performanceMetric);
%% Comparison with actual performance metric
err_exp = localizationerror(s(ids).itemlist,performanceMetric);
disp(['Actual normal-hearing performance (',performanceMetric,'): ',num2str(err_exp,'%2.1f')])
disp(['Predicted performance (',performanceMetric,'): ',num2str(err,'%2.1f')])
%% Plot results
figure;
plot_baumgartner2014(pred.p,pred.tang,pred.rang);
title([subID,', C_{OHC} = ',num2str(cohc,'%1.1f')])