function [twoears_benefit, weighted_bmld, weighted_better_ear] = leclere2015(target_in,int_in,fs)
%LECLERE2015 Compute the binaural useful-to-detrimental ratio for a reverberated target
% Usage: [twoears_benefit, weighted_bmld, weighted_better_ear] = leclere2015(target_in,int_in,fs)
%
% Input parameters:
% target_in : target
% int_in : interferer
% fs : sampling frequency [Hz]
%
% Output parameters:
% twoears_benefit : useful-to-detrimental ratio
% weighted_bmld : weighted binaural masking level difference
% weighted_better_ear : weighted better ear advantage
%
% LECLERE2015 computed the binaural useful-to-detrimental ratio for a reverberated
% target and multiple stationary noise interferers. The early and late
% parts of the target BRIR are separated, the early part constitutes the useful
% signal while the late part is concatenated with the interferer BRIRs to
% constitute the detrimental signal.
%
%
% See also: lavandier2022 vicente2020nh vicente2020 prudhomme2020 leclere2015 exp_lavandier2022
% jelfs2011
%
% References:
% M. Lavandier, T. Vicente, and L. Prud'homme. A series of snr-based
% speech intelligibility models in the auditory modeling toolbox. Acta
% Acustica, 2022.
%
% M. Lavandier and J. Culling. Speech segregation in rooms: Monaural,
% binaural and interacting effects of reverberation on target and
% interferer. J. Acoust. Soc. Am., 123(4):2237--2248, 2008.
%
% T. Leclère, M. Lavandier, and J. Culling. Speech intelligibility
% prediction in reverberation: Towards an integrated model of speech
% transmission, spatial unmasking and binaural de-reverberation. J.
% Acoust. Soc. Am., 137(6):3335--3345, 2015.
%
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/models/leclere2015.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Perfect
% #StatusCode: Good
% #Verification: Verified
% #Requirements: MATLAB
% AUTHOR: Matthieu Lavandier
% adapted for AMT by Clara Hollomey (2021)
%%
%%%%%-----------------Windowing Settings------------------%%%%%%%%%%%%%%%
%default values of the room-independent version of the model in Lecl�re et al. (2015):
%earlyLateLimit=30 ms, decayDuration=25 ms, windowShape=�linear�, lateWindow=�opposite�
earlyLateLimit = 30;
decayDuration=25;
windowShape= 'linear'; % 'gate', 'linear', 'exp', 'cumulative'
lateWindow='opposite';
padding = zeros(1024,2);
%early/late separation
[early, late] = local_windowing(target_in, earlyLateLimit, decayDuration, windowShape, lateWindow, fs);
useful = [early; padding];
detrimental = [late; padding; int_in];
%application of the binaural model on the useful and detrimental signals
nerbs = 1:0.5:round(f2erbrate(fs/2));
fc = zeros(size(nerbs));
bmld_prediction = zeros(size(nerbs));
better_ear_prediction = zeros(size(nerbs));
for n = 1:length(nerbs)
% get filter cf
fc(n) = round(erbrate2f(nerbs(n)));
% filter target and interferer separately
targ_left = auditoryfilterbank(useful(:,1),fs,fc(n), 'lavandier2022');
targ_right = auditoryfilterbank(useful(:,2),fs,fc(n), 'lavandier2022');
int_left = auditoryfilterbank(detrimental(:,1),fs,fc(n), 'lavandier2022');
int_right = auditoryfilterbank(detrimental(:,2),fs,fc(n), 'lavandier2022');
% BMLD
[int_phase, int_coherence] = local_do_xcorr(int_left,int_right,fs,fc(n)); % cross-correlate
[target_phase] = local_do_xcorr(targ_left,targ_right,fs,fc(n));
bmld_prediction(n) = bmld(int_coherence,target_phase,int_phase,fc(n));
% better-ear SNR in dB based on energy (independent of 0 padding of
% BRIRs) energy=10*Log10(sum(sig.*sig))
left_SNR = 10*log10(sum(targ_left.^2)/sum(int_left.^2));
right_SNR = 10*log10(sum(targ_right.^2)/sum(int_right.^2));
better_ear_prediction(n) = max(left_SNR,right_SNR);
end
%integration accross frequency using SII weightings
weightings = f2siiweightings(fc);
weighted_bmld = sum(bmld_prediction.*weightings');
weighted_better_ear = sum(better_ear_prediction.*weightings');
twoears_benefit = weighted_better_ear + weighted_bmld;
end
function [early, late] = local_windowing(signal, earlyLateLimit, decayDuration, windowShape, lateWindow, fs)
% Time windowing function to split the impulse response into an early
% and late parts.
% signal : impulse response vector/matrix (can be multichannel). Each column
% represents an impulse response
% earlyLateLimit (in ms): time for which the window stands to 1
% decayDuration (in ms): duration of the transition for the window to decrease from 1 to 0
% shape of the window : the value 1 is hold until the earlyLateLimit,
% after it's going down to 0 according to the specified window shape :
% - 'gate' : from 1 to 0 in only one sample
% - 'linear' : linear decrease
% - 'exp' : exponential decrease
% - 'cumulative' : decreasing according to the cumulative function of a
% normal distribution, the slope is settled with decayDuration
% lateWindow : defines the shape of the late window:
% - 'opposite': the late window is the complement of the early
% window, ie, earlyWindow + lateWindow = 1 (for every t)
% - 'gate': the late window is set to 1 right after the early
% window reached 0.
% fs: sampling rate (in Hz)
%
% Details can be found in Lecl�re et al. (2015), J. Acoust. Soc. Am.,
% Vol 135, p 3335-3345
plotFigure = false;
[lines, columns] = size(signal);
t = (0:lines-1)';
early = zeros(lines, columns);
late = zeros(lines, columns);
% Determine direct sound
dirSound = zeros(1,columns);
for m = 1:columns
dirSound(m) = local_get_direct_lag(signal(:,m));
end
dirSound = min(dirSound);
window = zeros(lines,1);
if earlyLateLimit <0 || fs*earlyLateLimit/1000 > lines
disp 'The Early/Late limit must be a positive value inferior to the length of the signal'
else
% Convert temporal parameters in samples
earlyLateLimit = round(fs * earlyLateLimit / 1000);
decayDuration = round(fs * decayDuration / 1000);
% Determine t1 and t2
t1 = dirSound + earlyLateLimit;
t2 = t1 + decayDuration;
switch windowShape
case 'gate'
window = window;
case 'cumulative'
sigma = (t1-t2) / (sqrt(2)*(erfinv(0.998)-erfinv(-0.998)));
mu = t1-sigma*sqrt(2)*erfinv(0.998);
window = 0.5*(1+erf((t-mu)/(sigma*sqrt(2))));
case 'linear'
% linear equation knowing that the window is 1 at t = t1
window(:,1) = (t1 -t)/decayDuration + 1;
case 'exp'
window = [window(1:t1); exp(-t/slope)];
window = window(1:lines);
otherwise
error('Wrong window shape')
end
% Impose 1 and 0 before t1 and after t2, respectively
window(1:t1,1) = 1;
window(t2:end, 1) = 0;
switch lateWindow
case 'opposite'
lateWindowing = 1-window;
case 'gate'
lateWindowing = [zeros(t2,1); ones(length(signal) - t2,1)];
otherwise
error('Wrong late gate chosen')
end
for k = 1:columns % For each signal
early(:,k) = signal(:,k).*window;
late(:,k) = signal(:,k).*lateWindowing;
end
end
if plotFigure
figure, hold on
plot(t/fs, early)
plot(t/fs,window, 'LineWidth', 2)
end
end
function [direct] = local_get_direct_lag(ir)
%to be used with leclere2015.m
[~, column] = size(ir);
for k = 1:column
[max_val, delay] = max(abs(ir(:,k)));
if (max(abs(ir(1:delay-1,k))) > 0.8*max_val)
delay(k) = local_get_direct_lag(ir(1:delay-1,k));
end
end
direct = min(delay);
end
function [phase, coherence] = local_do_xcorr(left, right, fs, fc)
[iacc, lags] = xcorr(left,right,round(fs/(fc*2)),'coeff'); %round(fs/(fc*2)) is for conformity with Durlach's 1972 formulation which allows time delays up to
%+/- half the period of the channel centre frequency.
[coherence, delay_samp] = max(iacc);
phase = fc*2*pi*lags(delay_samp)/fs;
end