function [doa, params] = reijniers2014(template,target,varargin)
%REIJNIERS2014 Bayesian spherical sound localization model (basic)
%
% Usage: [results,template,target] = reijniers2014(template,target,'num_exp',20,'sig_S',4.2);
%
% Input parameters:
% template : struct, with the fields
% .fs sampling rate (Hz)
% .fc ERB frequency channels (Hz)
% .itd itd computed for each hrir (samples)
% .H Matrix containing absolute values of HRTFS for all grid points
% .coords Matrix containing cartesian coordinates of all grid points, normed to radius 1m
% .T angular template for each coordinate
% target : struct, with the fields
% .fs sampling rate
% .fc ERB frequency channels
% .itd itd corresponding to source position
% .S sound source spectrum
% .H Matrix containing absolute values of HRTFS for all source directions
% .coords Matrix containing cartesian coordinates of all source positions to be estimated, normed to radius 1m
% .T angular template for each coordinate
%
%
% Output parameters:
% doa : directions of arrival in spherical coordinates
% params : additional model's data computed for estimations
%
%
% 'doa' contains the following fields:
%
% .est estimated [num_sources, num_repetitions, 3]
% .real actual [num_sources, 3]
%
% 'params' contains the following fields:
%
% .est_idx : Indices corresponding to template direction where the maximum probability density for each source position is found
% .est_loglik : Log-likelihood of each estimated direction
% .post_prob : Maximum posterior probability density for each target source
% .freq_channels : number of auditory channels
% .T_template : Struct with template data elaborated by the model
% .T_target : Struct with target data elaborated by the model
% .Tidx : Helper with indexes to parse the features from T and X
%
%
% REIJNIERS2014 accepts the following optional parameters:
%
% 'num_exp',num_exp Set the number of localization trials. Default is num_exp = 500.
%
% 'SNR',SNR Set the signal to noise ratio corresponding to
% different sound source intensities.
% Default value is SNR = 75 [dB]
%
% 'sig_itd',sig Set standard deviation for the noise on the itd.
% Default value is sig_itd = 0.569.
%
% 'sig_I',sig Set standard deviation for the internal noise.
% Default value is sig_I = 3.5.
%
% 'sig_S',sig Set standard deviation for the variation on the
% source spectrum. Default value is sig_I = 3.5.
%
%
% Further, cache flags (see amt_cache) can be specified.
%
%
% Description:
% ------------
%
% REIJNIERS2014(...) is an ideal-observer model of human sound
% localization, by which we mean a model that performs optimal
% information processing within a Bayesian context. The model considers
% all available spatial information contained within the acoustic
% signals encoded by each ear. Parameters for the optimal Bayesian model
% are determined based on psychoacoustic discrimination experiments on
% interaural time difference and sound intensity.
%
%
% Requirements:
% -------------
%
% 1) SOFA API v1.1 or higher from
% http://sourceforge.net/projects/sofacoustics for Matlab (e.g. in
% thirdparty/SOFA)
%
% See also: exp_reijniers2014 plot_reijniers2014 reijniers2014_featureextraction
% reijniers2014_metrics
% exp_engel2021
% baumgartner2014
% mclachlan2021
% baumgartner2013
% demo_reijniers2014
% demo_mclachlan2021
% reijniers2014_metrics
%
% References:
% R. Barumerli, P. Majdak, R. Baumgartner, J. Reijniers, M. Geronazzo,
% and F. Avanzini. Predicting directional sound-localization of human
% listeners in both horizontal and vertical dimensions. In Audio
% Engineering Society Convention 148. Audio Engineering Society, 2020.
%
% R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo, and F. Avanzini.
% Evaluation of a human sound localization model based on bayesian
% inference. In Forum Acusticum, 2020.
%
% J. Reijniers, D. Vanderleist, C. Jin, C. S., and H. Peremans. An
% ideal-observer model of human sound localization. Biological
% Cybernetics, 108:169--181, 2014.
%
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/models/reijniers2014.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB SOFA M-Stats M-Image
% #Author: Michael Sattler
% #Author: Roberto Barumerli
% (adapted from code provided by Jonas Reijniers)
%% Check input options
definput.import={'amt_cache'};
definput.flags.disp = {'no_debug','debug'};
definput.flags.type = {'fig2'};
definput.keyvals.num_exp = 500;
definput.keyvals.SNR = 75;
% parameters of the model computed in the supplementary material
definput.keyvals.sig_itd = 0.569;
definput.keyvals.sig_I = 3.5;
definput.keyvals.sig_S = 3.5;
definput.keyvals.sig = 5;
[flags,kv] = ltfatarghelper({'num_exp','SNR','sig_itd','sig_I','sig_S', 'sig'}, ...
definput, varargin);
%% sample uniformly over sphere with N is number of directions
% NOTE: amt_load('reijniers2014', 'dirs.mat') contains the sampled point on a unitary
% sphere
dirs=amt_load('reijniers2014','dirs.mat');
dirs=dirs.dirs;
if(isempty(dirs))
error('New directions grid not available. Please check your internet connection!')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if there is the need to generate a different number of directions
% this toolbox is required and following commented code need to be
% executed
% S2-Sampling-Toolbox-master V. 79cc337
% from 13 June 2019 or higher from
% https://github.com/AntonSemechko/S2-Sampling-Toolbox
% if isempty(dirs)
% num_dirs = 2000;
% [dirs,~,~,~] = ParticleSampleSphere('N',num_dirs);
% save('AUX DIRECTORY/reijniers2014/dirs.mat','dirs.mat',dirs);
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% remove the points from the unitary sphere below HRTF lowest elevation
idx = find(dirs(:,3) > min(template.coords(:, 3)));
dirs = dirs(idx,:);
num_dirs = length(idx);
%% interpolate at uniformly distributed directions and update H and itd
% calculate spherical harmonic coefficients of H and itd, using tikonov regularization
SHorder = 15; % spherical harmonic order
[AZ,EL] = cart2sph(template.coords(:,1),template.coords(:,2),template.coords(:,3));
Y_N = SH(SHorder, [AZ EL]);
% tikonov
lambda = 4.;
SIG = eye((SHorder+1)^2);
SIG(1:(2+1)^2,1:(2+1)^2) = 0;
cH(:,:,1) = transpose((Y_N'*Y_N+lambda*SIG)\Y_N'*squeeze(template.H(:,:,1))');
cH(:,:,2) = transpose((Y_N'*Y_N+lambda*SIG)\Y_N'*squeeze(template.H(:,:,2))');
citd = (Y_N'*Y_N+lambda*SIG)\Y_N'*template.itd(:);
% interpolate at uniformly distributed directions and update
[AZ,EL] = cart2sph(dirs(:,1),dirs(:,2),dirs(:,3));
Y_N = SH(SHorder, [AZ EL]);
template.H = [];
template.itd = [];
template.H(:,:,1) = transpose(Y_N*squeeze(cH(:,:,1))');
template.H(:,:,2) = transpose(Y_N*squeeze(cH(:,:,2))');
template.itd = Y_N*citd;
template.coords = dirs;
%% transform HRTF and itd to perceptually relevant units
% itd trasformation through jnd - see supplementary material for parameters
a = 32.5e-6;
b = 0.095;
template.itd = sign(template.itd) .* ((log(a + b * abs(template.itd)) - log(a)) / b);
target.itd = sign(target.itd) .* ((log(a + b * abs(target.itd)) - log(a)) / b);
% account for SNR and frequency-dependent hearing sensitivity (see section 2.1 in SI)
% add source spectrum to target and to template
% see last formula in the supplementary materials
temp_H = template.H + repmat(target.S(:), 1, size(template.H, 2), 2);
targ_H = target.H + repmat(target.S(:), 1, size(target.H, 2), 2);
SNR = kv.SNR; % defined as maximal SNR (in interval 2kHz-7kHz)
temp_H = max(temp_H ,-SNR);
temp_H(template.fc<=2000,:,:) = max(temp_H(template.fc<=2000,:,:),-SNR + 10);
temp_H(template.fc>=7000,:,:) = max(temp_H(template.fc>=7000,:,:),-SNR + 20);
targ_H = max(targ_H,-SNR);
targ_H(target.fc<=2000,:,:) = max(targ_H(target.fc<=2000,:,:),-SNR + 10);
targ_H(target.fc>=7000,:,:) = max(targ_H(target.fc>=7000,:,:),-SNR + 20);
%% define templates
T_template=[template.itd, ...
squeeze(temp_H(:,:,1)-temp_H(:,:,2))', ...
0.5.*squeeze(temp_H(:,:,1)+temp_H(:,:,2))'];
T_target=[target.itd, ...
squeeze(targ_H(:,:,1)-targ_H(:,:,2))', ...
0.5.*squeeze(targ_H(:,:,1)+targ_H(:,:,2))'];
%% define covariance matrix
sig_itd = kv.sig_itd; %0.569;
sig_I = kv.sig_I; % 3.5; Intensity discrimination for broadband signal
sig_S = kv.sig_S; %3.5; Source's template error
sig = kv.sig; % Expected variance on the source strength - interchannel noise communication
Sig = blkdiag(sig_itd^2, 2*sig_I^2*eye(length(template.fc)), ((sig_I^2)/2 + sig_S^2)*eye(length(template.fc)) + sig^2);
%% simulate num_exp experimental trials
num_exp = kv.num_exp;
invSig = inv(Sig);
num_src = size(target.coords,1);
log_lik = zeros(num_src, num_exp);
doa_idx = zeros(num_src, num_exp);
post_prob = zeros(num_src, num_exp, num_dirs);
doa_estimations = zeros(num_src, num_exp, size(template.coords, 2));
if nargout > 1
X_all = zeros(num_src, num_exp, size(T_target, 2));
end
for e = 1:num_exp
X = mvnrnd(T_target,Sig);
if nargout > 1
X_all(:,e,:) = X;
end
for s = 1:num_src
for d = 1:num_dirs
% Formula R
u_diff = (X(s,:)-T_template(d,:));
post_prob(s,e,d) = abs(exp(-0.5* u_diff*invSig*transpose(u_diff)));
end
% normalize
post_prob(s,e,:) = post_prob(s,e,:)/sum(post_prob(s,e,:) + eps);
% maximum a posteriori
[log_lik(s,e), doa_idx(s,e)] = max(post_prob(s,e,:));
doa_estimations(s,e,:) = template.coords(doa_idx(s,e), :);
end
end
%% results
doa.est = doa_estimations;
doa.real = target.coords;
% user required more than the estimations
if nargout > 1
params.template_coords = template.coords;
params.post_prob = post_prob;
params.est_idx = doa_idx;
params.est_loglik = log_lik;
params.X = X_all;
params.T_template = T_template;
params.T_target = T_target;
params.freq_channels = template.fc;
params.Tidx.itd = 1;
assert(length(target.fc)==length(template.fc))
params.Tidx.Hp = params.Tidx.itd + (1:length(target.fc));
params.Tidx.Hm = params.Tidx.Hp(end) + (1:length(target.fc));
else
clear X_all post_prob doa_idx log_lik
end
end
function Y_N = SH(N, dirs)
% calculate spherical harmonics up to order N for directions dirs [azi ele;...] (in radiant)
%
N_dirs = size(dirs, 1);
N_SH = (N+1)^2;
dirs(:,2) = pi/2 - dirs(:,2); % convert to inclinations
Y_N = zeros(N_SH, N_dirs);
% n = 0
Lnm = legendre(0, cos(dirs(:,2)'));
Nnm = sqrt(1./(4*pi)) * ones(1,N_dirs);
CosSin = zeros(1,N_dirs);
CosSin(1,:) = ones(1,size(dirs,1));
Y_N(1, :) = Nnm .* Lnm .* CosSin;
% n > 0
idx = 1;
for n=1:N
m = (0:n)';
Lnm = legendre(n, cos(dirs(:,2)'));
condon = (-1).^[m(end:-1:2);m] * ones(1,N_dirs);
Lnm = condon .* [Lnm(end:-1:2, :); Lnm];
mag = sqrt( (2*n+1)*factorial(n-m) ./ (4*pi*factorial(n+m)) );
Nnm = mag * ones(1,N_dirs);
Nnm = [Nnm(end:-1:2, :); Nnm];
CosSin = zeros(2*n+1,N_dirs);
% m=0
CosSin(n+1,:) = ones(1,size(dirs,1));
% m>0
CosSin(m(2:end)+n+1,:) = sqrt(2)*cos(m(2:end)*dirs(:,1)');
% m<0
CosSin(-m(end:-1:2)+n+1,:) = sqrt(2)*sin(m(end:-1:2)*dirs(:,1)');
Ynm = Nnm .* Lnm .* CosSin;
Y_N(idx+1:idx+(2*n+1), :) = Ynm;
idx = idx + 2*n+1;
end
Y_N = Y_N.';
end