function result = joergensen2011_multchansnrenv(Mix,Noise,fs,T)
%JOERGENSEN2011_MULTCHANSNRENV calculates the SNRenv
%
% Usage: result = joergensen2011_multChanSNRenv(signal,test,noise,fs,N,T)
%
% Input parameters:
% signal : clean input signal
% test : distorted signal (by noise, reverb etc.)
% noise : noise signal, processed in the same way as the test signal
% fs : sampling frequency
% N : Number of samples in the input signals
% T : Duration in seconds of the input signals
%
% Output parameters:
% result : struct containing the results
%
%
% joergensen2011_multChanSNRenv calculates the SNRenv in 7 modulation filters in 22
% Gammatone filters with 1/3-octave spacing.
%
% The result struct contains the following fields:
%
% .mod_fcs Center frequencies of the modulation filterbank
%
% .outSNRenvs Matrix with an SNRenv value for each modulation filter in each gammatone filter;
%
% .sEPSM_ExcPtns (Optional) Modulation excitation patterns
%
% See also: joergensen2011
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/modelstages/joergensen2011_multchansnrenv.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
debug = 0; % 0 = no debug; 1 = debug with figures
% Center frequencies of the gammatone filters:
midfreq=[63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000];
% diffuse field hearing threshold in quiet: ISO 387-7:2005
HT_diffuse = [37.5 31.5 26.5 22.1 17.9 14.4 11.4 8.4 5.8 3.8 2.1 1.0 0.8 1.9 0.5 -1.5 -3.1 -4.0 -3.8 -1.8 2.5 6.8 ];
stim(1,:) = Mix ;
stim(2,:) = Noise;
%% calculating filterbank time domain output
for k = 1:2
g = gammatonefir(midfreq,fs,'complex');
tmp = 2*real(ufilterbank(stim(k,:),g,1));
GT_output(:,:,k) = tmp; % time domain outputs
end
%
%% ------------------ determining which frequency bands of the noise alone that are above
%% the hearing threshold. They are used for further processing.
% Filtering the mix with a rectangular 1/3-octave filterbank
[fcs1 mix_rms_out] = thirdoctrmsanalysis24(Mix,fs);
mixRMS_dB = 20*log10(mix_rms_out)+100;
mix_spec_level_corr = mixRMS_dB - 10*log10(fcs1*0.231); % converted to spectrum level according to ANSI 1997.
% Find the bands with level above diffuse field Hearing Threshold
Nbands_to_process = find(mix_spec_level_corr(1:22)>HT_diffuse);
%% ------------------ calculating envelopes of temporal outputs
if ~isempty(Nbands_to_process)
for p = 1:Nbands_to_process
clear stim
stim(1,:) = GT_output(:,p,1) ;
stim(2,:) = GT_output(:,p,2);
% lowpass filtering at 150 Hz
[bb, aa] = butter(1, 150*2/fs);
for k = 1:2
tmp = abs(hilbert(stim(k,:))); % envelope
tmp = filter(bb,aa,tmp);
env(k,:) = tmp;
end
%% ------------estimation of SNRenv in this audio channel
[mod_fcs outSNRenvs(:,p) ] = joergensen2011snrenv(env(1,:),env(2,:),fs);
end
else
mod_fcs = nan;
outSNRenvs = nan;
end
% Saving output data:
result.mod_fcs = mod_fcs;
result.outSNRenvs = outSNRenvs;
if debug == 1
cut = 1;
t = 0:1/fsNew:T;
% t = t(cut:end-1);
t2 = 0:1/fs:T;
t2 = t2(1:end-1);
linwidth = 2;
fontsize = 14;
D2 = 1;
xmax = 100;
xmin = 0.4;
ymax = 1.2;
ymin = -1.2;
% x2_normed = x2/max(x2);
% test2_normed = test2/max(test2);
Bandidx = 14;
figure
subplot(3,1,1)
plot(t2,GT_output(:,p,1)/max(GT_output(:,p,1)),'k','linewidth',linwidth),hold on
plot(t2,GT_output(:,p,3)/max(GT_output(:,p,3)),'r','linewidth',linwidth)
plot(t2,GT_output(:,p,2)/max(GT_output(:,p,2)),'color',[.5 .5 .5],'linewidth',linwidth)
title(['Output from GT-band centered at ', num2str(midfreq(Bandidx)), ' Hz'])
xlabel('Time [s]','FontSize',fontsize)
ylabel('Amplitude ','FontSize',fontsize)
% xlim([xmin xmax])
ylim([ymin ymax])
set(gca,'fontsize',fontsize );
subplot(3,1,2)
% plot(t(1:D2:end),x2_normed(1:D2:end),'color',[.5 .5 .5],'linewidth',linwidth),hold on
plot(t, env_normed(:,1,Bandidx)','k','linewidth',linwidth), hold on
plot(t, env_normed(:,2,Bandidx)','color',[.5 .5 .5],'linewidth',linwidth)
% title(['speech' ' SNR = ' num2str(SNRs(end)) ])
xlabel('Time [s]','FontSize',fontsize)
ylabel('Amplitude ','FontSize',fontsize)
% xlim([xmin xmax])
ylim([ymin ymax])
set(gca,'fontsize',fontsize );
subplot(3,1,3)
% plot(t(1:D2:end),test2_normed(1:D2:end),'color',[.5 .5 .5],'linewidth',linwidth),hold on
plot(t, env_normed(:,3,Bandidx)','k','linewidth',linwidth)
% plot(t,env_int(3,:),'g','linewidth',linwidth)
title('speech + noise')
xlabel('Time [s]','FontSize',fontsize)
ylabel('Amplitude ','FontSize',fontsize)
% xlim([xmin xmax])
ylim([ymin ymax])
set(gca,'fontsize',fontsize );
Nnew = length(env_normed(:,1,Bandidx));
for k = 1:3
tmp = abs(fft(env_normed(:,k,Bandidx))/(Nnew/2)).^2 ; % only norm with N/2, why?
outSxx(:,k) = tmp(1:fix(Nnew/2)+1); %(1:fix(N/2)+1)
pos_freqs= linspace(0,fsNew/2,length(outSxx(:,k)));
[fcs1 mod_spec(:,k)] = octave_third_low(pos_freqs,outSxx(:,k));
[fcs_EPSM, outSxxEPSM(:,k)] = EPSM3(pos_freqs,outSxx(:,k)',0);
end
% tmp = find(isnan(mod_spec));
% mod_spec(tmp) = 0.00101;
octbands = 1:3:25;
xmin = .5;
xmax = 60;
ymin = -60;
ymax = 1;
figure
subplot(1,2,1)
% plot(pos_freqs, 10*log10(specMean(3,:)),'- k','linewidth',linwidth),hold on
% plot(pos_freqs, 10*log10(specMean(1,:)),'- k','linewidth',linwidth),hold on
% plot(fcs1, 10*log10(mod_spec(:,1)),'- s k','linewidth',linwidth), hold on
% plot(fcs1, 10*log10(mod_spec(:,3)),': * k','linewidth',linwidth),
% plot(fcs1, 10*log10(mod_spec(:,2)),'color',[.5 .5 .5],'linewidth',linwidth),
plot(pos_freqs, 10*log10(outSxx(:,1)),'- s k','linewidth',linwidth), hold on
plot(pos_freqs, 10*log10(outSxx(:,3)),': * k','linewidth',linwidth),
plot(pos_freqs, 10*log10(outSxx(:,2)),'color',[.5 .5 .5],'linewidth',linwidth),
xlim([xmin xmax])
ylim([ymin ymax])
xlabel('Modulation frequency [Hz]','FontSize',fontsize)
ylabel('Amplitude ','FontSize',fontsize)
set(gca,'XTick',fcs1(octbands),'XScale','log','XMinorTick','on','ytick',ymin:10:ymax,'fontsize',12 );
legend('clean','noisy','noise')
ymax = 10;
ymin = -25;
subplot(1,2,2)
plot([1 fcs_EPSM], 10*log10(outSxxEPSM(:,1)),'-s k','linewidth',linwidth),hold on
plot([1 fcs_EPSM], 10*log10(outSxxEPSM(:,3)),': * k','linewidth',linwidth)
plot([1 fcs_EPSM], 10*log10(outSxxEPSM(:,2)),'color',[.5 .5 .5],'linewidth',linwidth)
xlim([xmin xmax])
ylim([ymin ymax])
xlabel('Modulation filter f_c [Hz]','FontSize',fontsize)
ylabel('Envelope power','FontSize',fontsize)
legend('clean','noisy','noise')
set(gca,'XTick',[1 fcs_EPSM],'XScale','log','XMinorTick','on','ytick',-25:2:10,'fontsize',12);
end
end
function [midfreq_out rms_out] = thirdoctrmsanalysis24(insig,fs)
%THIRDOCTRMSANALYSIS XXX Description
% Usage: [midfreq_out rms_out] = thirdoctrmsanalysis24(x,fs);
%
% Input parameters:
% insig : Input signal
% fs : Sampling frequency
%
% Output parameters:
% midfreq_out : XXX DESC
% rms_out : XXX DESC
%
% `[midfreq_out,rms_out] = thirdoctrmsanalysis24(x,fs)` computes XXX
% insig = input;
% insig = real(ifft(ones(1,1000)));
% fs = 2000;
N = length(insig);
X = (fft(insig));
X_mag = abs(X) ;
X_power = X_mag.^2/N ;% power spectrum.
X_power_pos = X_power(1:fix(N/2)+1) ;
%take positive frequencies only and mulitply by two-squared to get the same
%total energy(used since the integration is only performed for positive
%freqiencies)
X_power_pos(2:end) = X_power_pos(2:end).* (2);
freq= linspace(0,fs/2,length(X_power_pos));
% freq = linspace(0,fs/2,N/2 +1);
% X_pos = X(1:N/2);
f_axis = [-1*freq(end:-1:2) freq(1:end-1)];
%resolution of data
resol=freq(2)-freq(1);
%band cross-over frequencies
% not needed: 16 20 25 32 40 50 63 80 100 % % 6300 8000 10000 12500 16000
% 20000
midfreq=[63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 ...
2500 3150 4000 5000 6300 8000 10000 12500 ];
crossfreq(1)=midfreq(1)/(2^(1/6));
crossfreq(2:length(midfreq)+1)=midfreq*(2^(1/6));
%cross-over indicies
y=crossfreq/resol;
%initialize output matrix
% output = zeros(length(midfreq));
% output_specs = zeros(length(midfreq));
%rounding up
crosselem=round(y);
for n=1:length(y)
if crosselem(n)<y(n)
crosselem(n)=crosselem(n)+1;
end
end
nn=1;
%while nn < numel(crossfreq) && (crossfreq(nn+1)<=freq(end))
for nn=1:numel(crossfreq)-1
if crossfreq(nn+1)<=freq(end)
rms_out(nn) = sqrt(sum(X_power_pos(crosselem(nn):crosselem(nn+1)-1))/N);
nn=nn+1;
end
midfreq_out = midfreq(1:nn-1);
end
end