function inoutsig = ihcenvelope(inoutsig,fs,varargin)
%IHCENVELOPE Inner hair cell envelope extration
% Usage: outsig=ihcenvelope(insig,fs,methodname);
%
% IHCENVELOPE(insig,fs,methodname) extract the envelope of an input signal
% insig sampled with a sampling frequency of fs Hz. The envelope
% extraction is performed by half-wave rectification followed by low pass
% filtering. This is a common model of the signal transduction of the
% inner hair cells.
%
% The parameter methodname describes the kind of low pass filtering to
% use. The name refers to a set of papers where in this particular
% method has been utilized or studied. The options are
%
% 'ihc_bernstein' Compute the Hilbert envelope, compress the envelope
% by raising it to the power .2, combine the envelope
% with the original fine-structure, half-wave rectify it,
% square it and low-pass filter it with a cut-off
% frequency of 425 Hz. This method is defined in
% Bernstein (1999). Note that this method includes both a
% compression and an expansion stage.
%
% 'ihc_breebaart2001' Use a 5th order filter with a cut-off frequency of 770
% Hz. This method is given in Breebaart (2001). Page
% 94 in Breebart's thesis.
%
% 'ihc_filter_order',n
% Filter order for the Breebaart filter, default: 5.
%
% 'ihc_dau1996' Use a 1st-order Butterworth filter with a cut-off
% frequency of 1000 Hz. This method has been used in all
% models deriving from the original 1996 model by
% Dau et. al. These models are mostly monaural in nature.
%
% 'ihc_king2019' Use a 1st-order Butterworth filter with a cut-off
% frequency of 1500 Hz.
%
% 'hilbert' Use the Hilbert envelope instead of the half-wave
% rectification and low pass filtering. This is not a
% releastic model of the inner hair envelope extraction
% process, but the option is included for
% completeness. The Hilbert envelope was first suggested
% for signal analysis in Gabor (1946).
%
% 'ihc_lindemann' Use a 1st order Butterworth filter with a cut-off
% frequency of 800 Hz. This method is defined in the
% Lindemann (1986a) paper.
%
% 'ihc_meddis' Use the Meddis inner hair cell model.
%
% 'minlvl' Set all values in the output equal to minlvl.
% This ensures that the output is non-negative and
% that further processing is not affected by
% unnaturally small values. The default value of []
% means to not do this.
%
% 'dim',d Work along dimension d.
%
%
% References:
% L. Bernstein, S. van de Par, and C. Trahiotis. The normalized
% interaural correlation: Accounting for NoSπ thresholds obtained with
% Gaussian and l̈ow-noisem̈asking noise. J. Acoust. Soc. Am.,
% 106:870--876, 1999.
%
% J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing
% model based on contralateral inhibition. I. Model structure. J. Acoust.
% Soc. Am., 110:1074--1088, August 2001.
%
% T. Dau, D. Pueschel, and A. Kohlrausch. A quantitative model of the
% effective signal processing in the auditory system. I. Model structure.
% J. Acoust. Soc. Am., 99(6):3615--3622, 1996a.
%
% D. Gabor. Theory of communication. J. IEE, 93(26):429--457, 1946.
%
% W. Lindemann. Extension of a binaural cross-correlation model by
% contralateral inhibition. I. Simulation of lateralization for
% stationary signals. J. Acoust. Soc. Am., 80:1608--1622, 1986.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/common/ihcenvelope.php
% #Author: The AMT Team (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% ------ Checking of input parameters --------------------------------
if nargin<2
error('Too few input parameters.');
end;
if ~isnumeric(inoutsig)
error('%s: The input signal must be numeric.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
definput.import = {'ihcenvelope'};
definput.keyvals.dim=[];
[flags,keyvals] = ltfatarghelper({},definput,varargin);
% ------ Computation -------------------------------------------------
[inoutsig,siglen,dummy,nsigs,dim,permutedsize,order]=assert_sigreshape_pre(inoutsig,[],keyvals.dim, ...
upper(mfilename));
if flags.do_ihc_undefined
error(['%s: you must supply a flag to designate the IHC model to ' ...
'use.'],upper(mfilename));
end;
if flags.do_ihc_bernstein1999
% The computational trick mentioned in the Bernstein paper is used
% here: Instead of raising the envelope to power .23 and combine with its
% TFS, we raise it to power -.77, and combine with the original
% signal. In this way we avoid computing the fine structure.
inoutsig=max(abs(hilbert(inoutsig)).^(-.77).*inoutsig,0).^2;
cutofffreq=425;
[b, a] = butter(2, cutofffreq*2/fs);
inoutsig = filter(b,a, inoutsig);
end;
if flags.do_ihc_breebaart2001
inoutsig = max( inoutsig, 0 );
% due to the successive application of the filter, the given 2000 Hz
% correspond to a cut off-frequency of 770 Hz after the five iterations
cutofffreq=2000;
[b, a] = butter(1, cutofffreq*2/fs);
for ii=1:keyvals.ihc_filter_order
inoutsig = filter(b,a, inoutsig);
end;
end;
if flags.do_ihc_dau1996
inoutsig = max( inoutsig, 0 );
cutofffreq=1000;
[b, a] = butter(1, cutofffreq*2/fs);
for ii=1:keyvals.ihc_filter_order
inoutsig = filter(b,a, inoutsig);
end
end;
if flags.do_hilbert
inoutsig = abs(hilbert(inoutsig));
end;
if flags.do_ihc_king2019
inoutsig = max( inoutsig, 0 );
cutofffreq=1000;
[b, a] = butter(1, cutofffreq*2/fs);
for ii=1:keyvals.ihc_filter_order
inoutsig = filter(b,a, inoutsig);
end
end;
if flags.do_ihc_lindemann1986
inoutsig = max( inoutsig, 0 );
cutofffreq=800;
[b, a] = butter(1, cutofffreq*2/fs);
inoutsig = filter(b,a, inoutsig);
end;
if flags.do_ihc_meddis1990
inoutsig = comp_meddishaircell(inoutsig, fs);
end;
if flags.do_ihc_relanoiborra2019
% Calculate filter coefficients for the low-pass filtering following
% half-wave rectification. 2nd order butterworth
cutofffreq=1000;
[b, a] = butter(2, cutofffreq*2/fs);
% 'haircell' envelope extraction. Part 1: Half-wave rectification
inoutsig = max( inoutsig, 0 );
% 'haircell' envelope extraction. Part 2: Low-pass filtering
inoutsig = filter(b,a, inoutsig);
end;
if ~isempty(keyvals.ihc_minlvl)
inoutsig = max( inoutsig, keyvals.ihc_minlvl );
end;
inoutsig=assert_sigreshape_post(inoutsig,dim,permutedsize,order);