%DEMO_BAUMGARTNER2014_BLOCKPROCESSING Demo for sagittal-plane localization model from Baumgartner et al. (2014)
%
% DEMO_BAUMGARTNER2014_BLOCKPROCESSING demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% for a listener of the listener pool and the median plane using the
% sagittal-plane localization model from Baumgartner et al. (2014) within a
% blockprocessing framework
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener (NH58).
%
% Predicted polar response angle probability of subject NH58 as a
% function of the polar target angle with probabilities encoded by
% brigthness.
%
% See also: baumgartner2014 exp_baumgartner2014 baumgartner2014_virtualexp
% localizationerror demo_baumgartner2014
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/demos/demo_baumgartner2014_blockprocessing.php
% #Author: Fabian Brinkmann (2021)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Load HRIRs --------------------------------------------------------------
% HRIRs from the FABIAN head-related transfer function database
hrirname = 'FABIAN_HRIR_measured_HATO_0';
%hrirname = 'ARI_NH12_hrtf_M_dtf 256';
HRIRs = SOFAload(fullfile(SOFAdbPath,'engel2021',[hrirname,'.sofa']));
% use only median plane HRIRs for faster computation
id = HRIRs.SourcePosition(:,1) == 0 | HRIRs.SourcePosition(:,1) == 180;
HRIRs.Data.IR = HRIRs.Data.IR(id,:,:);
HRIRs.SourcePosition = HRIRs.SourcePosition(id,:);
HRIRs = SOFAupdateDimensions(HRIRs);
% Parameters for blockwise processing -------------------------------------
% audio content. We use noise and low-pass filtered noise for this demo.
% In other cases this might be raw and processed audio files.
fsstim = 44100;
content_raw = randn(2^13, 1);
% 4th order Butterworth low-pass with 3 kHz cut-off frequency
sos = [1.26277170e-03 2.52554339e-03 1.26277170e-03 1.00000000e+00 -1.31605254e+00 4.46155785e-01
1.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 -1.57087561e+00 7.26170328e-01];
if ~isoctave
content_proc = sosfilt(sos, content_raw);
else
[b, a] = butter(4, 3000 * 2/fsstim);
content_proc = filter(b, a, content_raw);
end
N_block = 2048; % block length in samples
N_hop = 2048/2; % hop size in samples
window = true; % apply Hann window to each block
% Parameters for baumgartner 2014 -----------------------------------------
errflag = 'QE_PE_EB'; % (currently only working with this errflag)
regular_flag = 'regular';
S = 0.76;
polsamp = -30:5:210;
fs = HRIRs.Data.SamplingRate;
%% Run baumgartner 2014 ---------------------------------------------------
% check equal length of audio content
if size(content_raw, 1) ~= size(content_proc, 1)
error('audio contents must be of the same length')
end
% check equal number of channels of audio content
if size(content_raw, 2) ~= size(content_proc, 2)
error('audio contents must have the same number of channels')
end
% check number of channels of audio content
if size(content_raw, 2) > 2
error('audio contents must have 1 or 2 channels')
end
if ~isstruct(HRIRs)
error('HRIRs must be a SOFA file')
end
if ~isfield(HRIRs, 'GLOBAL_SOFAConventions')
error('HRIRs must be a SOFA file')
end
if ~strcmp(HRIRs.GLOBAL_SOFAConventions, 'SimpleFreeFieldHRIR')
error('HRIRs must be a SOFA file of the ''SimpleFreeFieldHRIR'' convention')
end
if N_block > size(content_raw, 1)
error('Block lengths exceeds length of audio content')
end
if N_block < size(HRIRs.Data.IR, 3)
error('N_block is smaller than the HRIR length')
end
if N_block < N_hop
warning('Hop size exceeds block length')
end
%% loop across chunks of audio content ------------------------------------
% get the window function
if window
w = hann(N_block);
end
% audio content length and number of channels
N_samples = size(content_raw, 1);
N_channels = size(content_raw, 2);
% number of blocks
if N_block == N_samples
N_blocks = 1;
else
N_blocks = ceil((N_samples-N_block) / N_hop) + 1;
end
% zero pad audio content
N_samples = N_block + (N_blocks - 1) * N_hop;
content_raw(end+1:N_samples, :) = 0;
content_proc(end+1:N_samples, :) = 0;
% force two channel audio content for convenience
if N_channels == 1
content_raw = [content_raw content_raw];
content_proc = [content_proc content_proc];
end
% copy SOFA file
H_raw = HRIRs;
H_proc = HRIRs;
% get HRIRs
h = shiftdim(HRIRs.Data.IR, 2);
% zero pad for easy overlap and add fft convolution
N_HRIR = size(h, 1);
h(end+1:N_block+N_HRIR, :, :) = 0;
% time axis for blocks
t = nan(N_blocks, 1);
% arrays for overlap and add
ola_target = zeros(N_HRIR, size(h,2), size(h,3));
ola_template = ola_target;
N_wait = ceil(N_blocks/100);
amt_disp('Processing audio blocks' );
for nn = 1:N_blocks
amt_disp(['block nr: ', num2str(nn)] ,'volatile');
% get current block of audio
nn_start = (nn-1) * N_hop + 1;
nn_end = nn_start + N_block - 1;
raw = content_raw(nn_start:nn_end, :, :);
proc = content_proc(nn_start:nn_end, :, :);
% time of current block
t(nn) = mean([nn_start nn_end]) / HRIRs.Data.SamplingRate;
% zero pad for easy overlap and add fft convolution
raw(end+1:N_block+N_HRIR, :) = 0;
proc(end+1:N_block+N_HRIR, :) = 0;
% convolve HRIRs with audio content
raw_l = zeros(size(h(:,:,1)));
raw_r = zeros(size(h(:,:,1)));
proc_l = zeros(size(h(:,:,1)));
proc_r = zeros(size(h(:,:,1)));
for ii = 1:size(h, 2)
raw_l(:,ii) = fft(raw(:,1)) .* fft(h(:,ii,1));
raw_r(:,ii) = fft(raw(:,2)) .* fft(h(:,ii,2));
proc_l(:,ii) = fft(proc(:,1)) .* fft(h(:,ii,1));
proc_r(:,ii) = fft(proc(:,2)) .* fft(h(:,ii,2));
end
% join left and right channels
if ~isoctave
raw = cat(3, ifft(raw_l, 'symmetric'), ifft(raw_r, 'symmetric'));
proc = cat(3, ifft(proc_l, 'symmetric'), ifft(proc_r, 'symmetric'));
else
raw = cat(3, ifft(raw_l), ifft(raw_r));
proc = cat(3, ifft(proc_l), ifft(proc_r));
end
% overlap and add (checked and working :)
raw(1:N_HRIR, :, :) = raw(1:N_HRIR, :, :) + ola_target;
proc(1:N_HRIR, :, :) = proc(1:N_HRIR, :, :) + ola_template;
% save overlap for next step
ola_target = raw(N_block+1:end, :, :);
ola_template = proc(N_block+1:end, :, :);
% remove overlap from current block
raw = raw(1:N_block, :, :);
proc = proc(1:N_block, :, :);
% window
if window
for jj=1:size(raw, 2)
raw(:,jj, 1) = raw(:,jj,2) .* w;
proc(:,jj, 1) = proc(:,jj,2) .* w;
raw(:,jj, 2) = raw(:,jj,2) .* w;
proc(:,jj, 2) = proc(:,jj,2) .* w;
end
end
% put in SOFA objects
H_raw.Data.IR = shiftdim(raw, 1);
H_proc.Data.IR = shiftdim(proc, 1);
% update dimensions of SOFA files
if nn == 1
H_raw = SOFAupdateDimensions(H_raw);
H_proc = SOFAupdateDimensions(H_proc);
end
% run the loaclization model with raw and processed audio content
[err_current, pred_current] = baumgartner2014(H_proc, HRIRs, errflag, 'S', S, 'polsamp', polsamp, 'fs', fs, 'fsstim', fsstim);
[err_base, pred_base] = baumgartner2014(H_raw, HRIRs, errflag, 'S', S, 'polsamp', polsamp, 'fs', fs, 'fsstim', fsstim );
% collect the output
% allocate space
if nn == 1
err.qe = nan(N_blocks, 1);
err.pe = err.qe;
err.pb = err.qe;
pred.p = nan(size(pred_current.p,1), size(pred_current.p,2), N_blocks);
pred.rang = pred_current.rang;
pred.tang = pred_current.tang;
err.qe_baseline = err.qe;
err.pe_baseline = err.qe;
err.pb_baseline = err.qe;
pred.p_baseline = pred.p;
end
% save current results
err.qe(nn) = err_current.qe;
err.pe(nn) = err_current.pe;
err.pb(nn) = err_current.pb;
pred.p(:,:,nn) = pred_current.p;
err.qe_baseline(nn) = err_base.qe;
err.pe_baseline(nn) = err_base.pe;
err.pb_baseline(nn) = err_base.pb;
pred.p_baseline(:,:,nn) = pred_base.p;
end
amt_disp();
% add time vector to the output
err.t = t;
pred.t = t;
varargout{1} = err;
varargout{2} = pred;
%% Plot results -----------------------------------------------------------
% time axis for audio content
t = (0:size(content_raw,1) - 1) / fs;
figure()
subplot(3,1,1)
plot(t, content_raw)
title 'Template audio content'
xlabel 'Time in seconds'
ylabel 'Amplitude'
xlim([0 t(end)])
if size(content_raw, 2) > 1
legend('left', 'right', 'Location', 'SouthEast')
end
subplot(3,1,2)
plot(err.t, err.pe, 'r.-')
hold on
plot(err.t, err.pe_baseline, 'k.-')
title 'Polar error'
xlabel 'Time in seconds'
ylabel({'Polar error' 'in degrees'})
xlim([0 t(end)])
ylim([0 1.1 * max([err.pe; err.pe_baseline])])
subplot(3,1,3)
plot(err.t, err.qe, 'r.-')
hold on
plot(err.t, err.qe_baseline, 'k.-')
legend('Processing', 'Baseline', 'location', 'best')
title 'Quadrant error'
xlabel 'Time in seconds'
ylabel({'Quadrant error' 'in percent'})
xlim([0 t(end)])
ylim([0 1.1 * max([err.qe; err.qe_baseline])])