This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
%DEMO_JOERGENSEN2013 Demo for the multi-resolution speech-based envelope spectrum model
%
% DEMO_JOERGENSEN2013 computes the signal-to-noise envelope-power ratio
% (SNRenv) for a speech sentence in noise at an SNR of -3 dB.
% The SNRenv can be then used to predict speech intelligibility.
%
% Pcorrect indicates the probability of correctly understanding the
% sentence based on results from Joergensen et al. (2013).
%
% See also: joergensen2013 joergensen2011
%
% References:
% S. Joergensen and T. Dau. Predicting speech intelligibility based on
% the signal-to-noise envelope power ratio after modulation-frequency
% selective processing. J. Acoust. Soc. Am., 130(3):1475--1487, 2011.
%
% S. Jørgensen, S. D. Ewert, and T. Dau. A multi-resolution envelope
% power based model for speech intelligibility. J. Acoust. Soc. Am.,
% 134(1):436--446, 2013.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/demos/demo_joergensen2013.php
% #Author : Piotr Majdak
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Load speech (from the CLUE corpus)
x=amt_load('joergensen2011','Danish_CLUE_10sentence_samples_22kHz.mat');
speech = x.sentenceArray{1};
sentenceFileLevel = -26.00; % The RMS level of all CLUE sentence files corresponds to ...
SPL = 65; % ... this sound pressure level
SNR = -3;
fs = 22050;
speech = speech*10^((SPL-sentenceFileLevel)/20);
N = length(speech);
% Load speech-shaped noise from the CLUE corpus
noise = amt_load('joergensen2011','SSN_CLUE_22kHz.wav');
% pick a random segment from the noise file
Nsegments = floor(length(noise)/N);
startIdx = randi(Nsegments-2 ,1)*N;
noise = noise(startIdx:startIdx+N -1)';
noise = noise./rms(noise)*10^((SPL-SNR)/20);
if size(noise) ~= size(speech), noise = noise'; end
% Create a mixed signal
test = noise + speech;
% Run the model without any priors
tmp = joergensen2013(test,noise,fs);
SNRenvs_noIOparameters = tmp.SNRenv
% Run the model with parameters for the CLUE material from Joergensen et al., (2013).
IOparameters = [0.61 0.5 8000 0.6];
tmp = joergensen2013(test,noise,fs, IOparameters);
SNRenvs_withIOparameters = tmp.SNRenv
Pcorrect = tmp.P_correct