This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
%DEMO_REIJNIERS2014 Demo for full sphere localization model from Reijniers et al. (2014)
%
% DEMO_REIJNIERS2014(flag) demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% on the full sphere using the localization model from Reijniers et al. (2014).
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener (NH12).
%
% Averaged polar and lateral accuracy
%
% See also: reijniers2014 exp_reijniers2014 reijniers2014_featureextraction
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/demos/demo_reijniers2014.php
% #Author : Roberto Barumerli
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Settings
subID = 'NH12'; % subject ID of exemplary listener
az = 15; % azimuth target angle in degrees
el = 30; % elevation target angle in degrees
num_exp = 100; % # of virtual experimental runs
display_level = 'no_debug'; % set to 'debug' to see more information, set to 'no_debug' to have less mess on your display
assert(numel(az)==numel(el))
amt_disp('Experiment conditions:','documentation');
for i=1:length(az)
amt_disp(sprintf(' Azimuth: %0.1f deg; Elevation: %0.1f deg', az(i), el(i)),'documentation');
end
amt_disp(sprintf(' Repetitions: %i', num_exp),'documentation');
amt_disp('------------------------','documentation');
%% Get listener's data
SOFA_obj = SOFAload(fullfile(SOFAdbPath,'baumgartner2013', ...
'ARI_NH12_hrtf_M_dtf 256.sofa'));
%% Preprocessing source information for both directions
[template, target] = reijniers2014_featureextraction(SOFA_obj, ...
'targ_az', az, 'targ_el', el, display_level);
%% Run virtual experiments
[doa, params] = reijniers2014(template, target, 'num_exp', num_exp, display_level);
%% Calcualte performance measures
amt_disp('Performance Predictions:','documentation');
lat_acc = reijniers2014_metrics(doa, 'accL');
pol_acc = reijniers2014_metrics(doa, 'accP');
amt_disp(sprintf(' Lateral accuracy: %0.2fdeg', lat_acc),'documentation');
amt_disp(sprintf(' Polar accuracy: %0.2fdeg', pol_acc),'documentation');
%% Plot results
plot_reijniers2014(params.template_coords, ...
squeeze(params.post_prob(1, 1, :)), ...
'target', doa.real(1,:));
title('Posterior probability density of the first experiment');