This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function varargout = exp_relanoiborra2019(varargin)
%EXP_RELANOIBORRA2019 experiments from Relano-Iborra et al. 2019
%
% Usage: exp_relanoiborra2019('fig3');
%
% This script reproduces Figure 3 of Relano-Iborra et al. It finds the free
% parameters of the logistic function that relates the output of the sCASP
% model (correlation coefficient d) with the percentage of correct answers.
% The data used for this fitting is taken from Nielsen and Dau (2009). The
% testing conditions are replicated and fed to the sCASP model. Later a least
% squares analysis is used to fit the function to the data.
%
% Examples:
% ---------
%
% To display Figure 3 use :
%
% exp_relanoiborra2019('fig3');
%
% See also: relanoiborra2019
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/experiments/exp_relanoiborra2019.php
% #Author: Helia Relano Iborra (2020): Code provided for the AMT
% #Author: Piotr Majdak (2021): Various bug fixes for the AMT 1.0
% #Author: Clara Hollomey (2021): Adaptations for the AMT 1.0
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.import = {'amt_cache'};
definput.flags.type = {'missingflag', 'fig3'};
[flags,kv] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},...
definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.', ...
upper(mfilename),flagnames);
end
%% Initialization
Pcorrect_human = [0 8 35 71 90 100 ]; %% Human data
SNRs= -8:2:2;
%load single_150_SentArray22kHz_varLength % CLUE speech
x = amt_load('relanoiborra2019', 'single_150_SentArray22kHz_varLength.mat');
sentenceArray = x.sentenceArray;
fsSent = 22050;
noise_name = 'SSN_CLUE_22kHz.wav'; % SSN Noise
speechSPL = 65;
Nsentences=25;
fsRef = 22050; % sampling freq.
Pref= 20e-6; % Transformation to Pascals
d= zeros(length(SNRs), Nsentences);
%% Run experiment:
for q=1:Nsentences
amt_disp(['Processing sentence: ' num2str(q) ' out of ' num2str(Nsentences)]);
speech = sentenceArray{q};
speech = resample(speech, fsRef, fsSent );
N_org= length(speech); % Calculate length of original sentence
speech = [speech; speech]; % Prepane the same sentence
speech = Pref*speech*(1/rms(speech))*10^((speechSPL)/20); % Set speech level
N = length(speech); % Overall speech size
for n=1:length(SNRs)
%noise = audioread(noise_name);
noise = amt_load('relanoiborra2019', noise_name);
Nsegments = floor(length(noise)/N);
startIdx = randi(Nsegments-2 ,1)*N;
noise = noise(startIdx:startIdx+N -1)'; % random segment from the noise file
noise = Pref*(noise./rms(noise)*10^((speechSPL-SNRs(n))/20)); % sets the level of the noise signal
if size(noise) ~= size(speech)
noise = noise'; % Flips noise signal if needed
end
test = noise + speech; % Gerating the noisy mixture
% DRNL conf:
flow = 100;
fhigh = 8e3;
sbj = 'NH';
% Call model:
tmp = relanoiborra2019(speech, test, fsRef, flow, fhigh, 'N_org',N_org, 'subject',sbj);
d(n, q) = tmp.dfinal; % correlation value per sentence and SNR
end % End loop over SNRs
end % End loop over sentences
d_mean= mean(d, 2); % Model outputs averaged across sentences
%% Fitting
xdata = d_mean';
ydata = Pcorrect_human;
fun = @(a,xdata) 100./(1 + exp(a(1)*xdata + a(2))); %Logistic function
pguess = [0 0]; %starting guess
[fit_param,R,J,CovB,MSE] = nlinfit(xdata,ydata,fun,pguess); % non-linear least squares optimization
% Goodness of fit
ysim= fun(fit_param, xdata);
rsq2 = 1 - sum(R.^2) / sum((ydata- mean(ydata)).^2);
varagout{1} = 0;
%% Plotting
x = linspace(0, 1, 200);
fit_funct= fun(fit_param, x);
figure
scatter(d_mean, Pcorrect_human, 68, 'filled', 'r')
hold on
plot(x, fit_funct,'k', 'LineWidth', 2)
xlabel('Model output (d)'), ylabel('% correct'), title('sCASP mapping for CLUE material')
le= legend(' Nielsen & Dau (2009) data', 'f_C_L_U_E', 'Location', 'southeast');
set(le, 'box', 'off')
text(3,12,{[' R^2 = ',num2str(rsq2,2)]},'fontsize',12,'FontName', 'cambria');
set(gca, 'fontsize',12)