This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
[Obj,results]=ziegelwanger2014(data,estimation,outlierDetection,model,p0_onaxis)
Obj | SOFA object |
estimation | (optional) TOA estimation method: [TOAest] pre-estimated TOAs 1 Built-in maximum detection 2 Built-in centroid of squared IR, 3 Built-in mean group delay, 4 Built-in maximum of the minimum-phase cross-correlation (default) 5 Built-in maxium detection after 3k-low-pass filtering (similar to Andreopoulou and Katz, 2017) String (Experimental) Estimator from the 'itdestimator' function, requires further parameters |
outlierDetection | (optional) detect outliers in estimated TOAs 0 off 1 on (default values: [0.05;0.01]) [alpha r] reject outliers using the extreme Studentized deviance test with the significance level of ALPHA and upper bound of outlier rate R |
model | (optional) correct estimated toa, using geometrical TOA-Model 0 no model, just estimate the TOAs 1 (default) off-axis TOA modeled 2 on-axis TOA modeled |
p0_onaxis | (optional) startvalues for lsqcurvefit |
lowpass | (optional) bandwidth setting when used with the estimator from 'itdestimator' ('lp' for lowpass, 'bb' for broadband) |
upper_cutfreq | (optional) lowpass cutoff (Hz) when used with the estimator from 'itdestimator' |
threshlvl | (optional) threshold level (dB) when used with the 'Threshold' estimator from 'itdestimator' |
Obj | SOFA Object |
results | struct with fields .toa: data matrix with time of arrival (TOA) for each impulse response (IR) .p_onaxis: estimated on-axis model-parameters .p_offaxis: estimated off-axis model-parameters |
Estimates the Time-of-Arrival for each measurement in Obj (SOFA) and corrects the results with a geometrical model of the head.
To calculate the model parameters for the on-axis time-of-arrival model (p_onaxis) and for the off-axis time-of-arrival model (p_offaxis) for a given HRTF set (SOFA object, 'Obj') with the minimum-phase cross-correlation estimation, use:
[Obj,results]=ziegelwanger2014(Obj,4,1);
H. Ziegelwanger and P. Majdak. Modeling the direction-continuous time-of-arrival in head-related transfer functions. J. Acoust. Soc. Am., 135:1278--1293, 2014.