function [varargout] = barumerli2023_featureextraction(sofa_obj, varargin)
%BARUMERLI2023_FEATUREEXTRACTION extract binaural and monaural cues from SOFA object
%
% Usage: [template, target] = barumerli2023_featureextraction(sofa_obj)
%
% Input parameters:
% sofa_obj: Struct in SOFA format with DTFs
%
% Output parameters:
% template : internal templates with specific feature points
% target : (optional) preprocessed target struct
%
% BARUMERLI2023_FEATUREEXTRACTION(...) computes temporally integrated
% spectral magnitude profiles, itd and ild.
%
%
% Additional input parameters:
%
% 'fs' Sampling rate. Default: 48kHz.
%
% 'flow' Low frequency for auditory bands. Default: 700Hz
%
% 'fhigh' High frequency for auditory bands. Default: 18kHz
%
% 'space' Auditory bands spacing. Default: 1 ERB
%
% 'targ_az' column vector to select the binaural stimulus in the
% templates with the specified azimuth in degree shall
% be used as target. Use in combination with targ_el.
% Default: [].
%
% 'targ_el' column vector to select the binaural stimulus in the
% templates with the specified elevation in degree shall
% be used as target. Use in combination with targ_az.
% Default: [].
%
% 'source_ir' Specify a custom sound source to be convolved with HRTFs.
% The default consider broadband noise. Default: []
%
% 'source_fs' Sampling rate of the source. Default: 0 Hz
%
%
% Further, cache flags (see amt_cache) and plot flags can be specified:
%
% 'template' Compute only templates.
%
% 'target' Compute only targets.
%
% 'pge' Use spectral gradients as monaural cues.
%
% 'dtf' Use spectral amplitudes as monaural cues.
%
% 'monaural_none' Do not use monaural cues.
%
% 'reijniers' Compute feature space as in Reijniers et al. 2014
%
% 'source' Use sound source provided with the parameter source_ir
% to compute targets.
%
%
%
%
%
% See also: barumerli2023
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/barumerli2023_featureextraction.php
% #StatusDoc: Good
% #StatusCode: Submitted
% #Verification: Unknown
% #Requirements: MATLAB SOFA M-STATISTICS M-Control M-Signal
% #Author: Roberto Barumerli (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% References: barumerli2022
definput.import={'amt_cache', 'barumerli2023_featureextraction'};
definput.keyvals.fs = sofa_obj.Data.SamplingRate;
[flags, kv] = ltfatarghelper({}, definput, varargin);
% some checks... please if you need to change them be careful...
assert(~xor(flags.do_source, ~isempty(kv.source_ir)), ...
'Please add the flag source to enable the source computation!')
assert(xor(flags.do_all, flags.do_template | flags.do_target))
if(flags.do_source)
assert(logical(flags.do_target), ...
'If you need to add a source, please specify the target flag!')
end
%% extract coordinates
% Get directions from SOFA file
coords = barumerli2023_coordinates(sofa_obj);
% NOTE: assume position on a sphere with radius of 1 meter
% if you change it there will be a problem with the cached points
% for the sphere interpolation!
coords.normalize_distance();
% do_all, do_template and do_target allow to reduce the number of times
% that the features require to be computed
if (flags.do_all || flags.do_template)
features = local_computefeatures(sofa_obj, coords, kv, flags);
end
%% TEMPLATE
if flags.do_template || flags.do_all
%% SPHERICAL HARMONIC INTERPOLATION
template.monaural = [];
if ~strcmp(flags.feature_monaural, 'none')
% split monaural
pl = size(features.monaural, 2);
monaural_left = features.monaural(:, 1:pl/2);
monaural_left = local_resamplefeatures(monaural_left, features.coords);
monaural_right = features.monaural(:, (pl/2+1):end);
monaural_right = local_resamplefeatures(monaural_right, features.coords);
template.monaural = [monaural_left, monaural_right];
end
[template.itd, template.coords] = ...
local_resamplefeatures(features.itd, features.coords);
template.ild = ...
local_resamplefeatures(features.ild, features.coords);
template.fc = features.fc;
end
%% TARGET
if flags.do_target
target = local_computefeatures(sofa_obj, coords, kv, flags);
elseif flags.do_all
assert(logical(flags.do_source_broadband))
assert(exist('template', 'var') == 1)
target = template;
if ~isempty(kv.targ_az)
coords_search = barumerli2023_coordinates([kv.targ_az, kv.targ_el, ones(size(kv.targ_el))], 'spherical');
[coords_new, idx] = extract_directions_from_coords(target.coords, coords_search);
target.coords = coords_new;
target.itd = target.itd(idx,:);
if ~isempty(target.ild)
target.ild = target.ild(idx,:);
end
if ~isempty(target.monaural)
target.monaural = target.monaural(idx,:);
end
end
end
% output parameters
if flags.do_template
varargout{1} = template;
elseif flags.do_target
varargout{1} = target;
else
varargout{1} = template;
varargout{2} = target;
end
end
function [feature] = local_computefeatures(sofa_obj, coords, kv, flags)
% normalize HRTF
sofa_frontal = local_extractdirections(sofa_obj, barumerli2023_coordinates([0,0,1], 'spherical'));
sofaFData = sofa_frontal.Data.IR(1, :, :);
sofa_obj.Data.IR = sofa_obj.Data.IR ./ (max(abs(sofaFData(:)))+eps);
stimulus = sofa_obj.Data.IR;
if flags.do_target
if ~isempty(kv.targ_az)
coords_search = barumerli2023_coordinates([kv.targ_az, kv.targ_el, ones(size(kv.targ_el))], 'spherical');
[sofa_obj, coords] = local_extractdirections(sofa_obj, coords_search);
end
stimulus = sofa_obj.Data.IR;
if flags.do_source
% normalize sound source
kv.source_ir = kv.source_ir ./ max(abs(kv.source_ir));
stimulus = local_convolvesource(sofa_obj.Data.IR, sofa_obj.Data.SamplingRate, kv.source_ir, kv.source_fs);
end
end
%% compute LATERAL
% parameters to transform into the jnd scale
% check Reijniers2014 for these magic numbers
a = 32.5e-6;
b = 0.095;
% ITD
itd = itdestimator(stimulus, 'MaxIACCe', 'fs', kv.fs);
% transform into the jnd scale - check Reijniers2014
itd = sign(itd) .* ((log(a + b * abs(itd)) - log(a)) / b);
% ILD
ild = (mag2db(squeeze(rms(stimulus(:,1,:), 'dim', 3))) - ...
mag2db(squeeze(rms(stimulus(:,2,:),'dim', 3))));
feature.itd = itd;
feature.ild = ild;
%% compute POLAR
% compute spectral analysis
[dtf, fc] = local_spectralanalysis(stimulus, kv);
for ch=1:size(dtf, 2)
for side=1:2
dtf(:,ch,side,:) = sqrt(max(squeeze(dtf(:,ch,side,:)),0));
end
end
% Averaging over time (RMS)
dtf = (rms(dtf, 'dim', 4));
% convert in dB
dtf = 20*log10(dtf);
if strcmp(flags.feature_monaural, 'dtf')
feature.monaural = dtf;
elseif strcmp(flags.feature_monaural, 'pge')
% compute Positive Gradient Extraction (PGE)
pge = zeros(size(dtf, 1), size(dtf, 2)-1, size(dtf, 3));
for i=1:size(dtf,1)
[pge(i, :, :), gfc] = ...
baumgartner2014_gradientextraction(squeeze(dtf(i,:,:)), fc);
end
fc = gfc;
feature.monaural = pge;
elseif strcmp(flags.feature_monaural, 'monaural_none')
feature.monaural = [];
else
error(['The monaural feature ', ...
flags.monaural_feature, ' was not recognized'])
end
feature.fc = fc;
%% combine SPECTRAL
if strcmp(flags.feature_monaural, 'monaural_none')
feature.monaural = [];
elseif flags.do_reijniers
feature.ild = [squeeze(dtf(:,:,1)) - squeeze(dtf(:,:,2))];
feature.monaural = [squeeze(dtf(:,:,1)) + squeeze(dtf(:,:,2))];
warning(['Calibrations before 2021-12-31 are not valid', ...
'since ild and monaural have been flipped'])
elseif flags.do_dtf || flags.do_pge
monaural_idx = find(fc>kv.monoaural_bw(1) & fc<kv.monoaural_bw(2));
assert(~isempty(monaural_idx), 'monoaural frequency bands empty')
feature.fc = fc(monaural_idx);
feature.monaural = reshape(feature.monaural(:,monaural_idx,:), ...
size(feature.monaural(:,monaural_idx,:), 1),[]);
else
error(['The monaural feature was not recognized'])
end
feature.coords = coords;
end
function [sofa_obj, coords_new, idx] = local_extractdirections(sofa_obj, coords_search)
coords = barumerli2023_coordinates(sofa_obj);
coords.normalize_distance();
[coords_new, idx] = extract_directions_from_coords(coords, coords_search);
sofa_obj.API.('M') = length(idx);
sofa_obj.Data.IR = sofa_obj.Data.IR(idx,:,:);
sofa_obj.SourcePosition = sofa_obj.SourcePosition(idx,:);
end
function [coords_new, idx] = extract_directions_from_coords(coords, coords_search)
if(coords_search.count_pos() ~= 0)
% TODO: warning... some points are avoided because of numerical
[idx, coords_new] = coords.find_positions(coords_search);
if(numel(idx) ~= coords_search.count_pos())
amt_disp(sprintf('Requested HRTF''s points: %i\nFound: %i', ...
coords_search.count(), numel(idx)))
end
else
coords_new = coords;
idx = 1:coords_search.count_pos();
end
end
function stimulus = local_convolvesource(hrir, hrir_fs, source, source_fs)
if source_fs <= 0
error('source_fs is zero')
end
if source_fs ~= hrir_fs
fsgcd = gcd(hrir_fs, source_fs);
source = resample(source, hrir_fs/fsgcd, source_fs/fsgcd);
end
stimulus = zeros(size(hrir,1), ...
size(hrir,2), ...
size(hrir,3) + length(source) - 1);
for i = 1:size(hrir, 1)
stimulus(i,:,:) = lconv(squeeze(hrir(i,:,:))',source)';
end
end
function [dtf, fc] = local_spectralanalysis(stimulus, kv)
% this function expect the stimulus organized as
% [directions, ear_channel, time_index]
assert(size(stimulus, 2) == 2);
[dir_len, ear_len, time_len] = size(stimulus);
dir_idx = 1;
ear_idx = 2;
time_idx = 3;
% permute in order to use ufilterbankz
stimulus = permute(double(stimulus),[time_idx, dir_idx, ear_idx]);
% pad to account for longer filters in the filterbank
pad_len = 0.05; % secs
pad_mat = zeros(pad_len*kv.fs - time_len, dir_len, ear_len);
stimulus = cat(1, stimulus, pad_mat);
% compute templates features
if kv.space == 1 % Standard spacing of 1 ERB
[dtf,fc] = auditoryfilterbank(stimulus(:,:), kv.fs, 'flow', ...
kv.flow, 'fhigh', kv.fhigh);
else
fc = audspacebw(kv.flow, kv.fhigh, kv.space, 'erb');
[bgt,agt] = gammatone(fc, kv.fs, 'complex');
% channel (3rd) dimension resolved
dtf = 2*real(ufilterbankz(bgt,agt, stimulus(:,:)));
end
% restore 2 channels
dtf_size = size(stimulus);
dtf = reshape(dtf,[dtf_size(1),length(fc),dtf_size(2),dtf_size(3)]);
dtf = permute(dtf, [3 2 4 1]);
end
function [feature_interp, coords_interp] = local_resamplefeatures(feature, coords)
if isempty(feature)
feature_interp = zeros(0);
coords_interp = zeros(0);
return
end
% sample uniformly over sphere with N is number of directions
% NOTE: amt_cache('get', 'dirs') contains the sampled point on a unitary
% sphere
%dirs = amt_cache('get', 'dirs');
dirs = amt_load('barumerli2023','dirs.mat');
% remove the points from the unitary sphere below HRTF lowest elevation
coords_init = coords.return_positions('cartesian');
dirs = dirs.cache.value;
dirs = dirs(dirs(:,3) > min(coords_init(:, 3)),:);
coords_interp = barumerli2023_coordinates(dirs, 'cartesian');
%% interpolate at uniformly distributed directions and update feature
% calculate spherical harmonic coefficients of H and itd, using tikonov regularization
sh_order = 15; % spherical harmonic order
Y_N_tik = local_SH(sh_order, coords);
% calculate SH coefficients of H and ITD, using tikonov regularization
lambda = 4.;
SIG = eye((sh_order+1)^2);
SIG(1:(2+1)^2,1:(2+1)^2) = 0;
% interpolate at uniformly distributed directions and update
Y_N_interp = local_SH(sh_order, coords_interp);
for c = 1:size(feature, 3)
c_feat = (Y_N_tik'*Y_N_tik+lambda*SIG)\Y_N_tik'*squeeze(feature(:,:,c));
feature_interp(:,:,c) = Y_N_interp*c_feat;
end
end
function Y_N = local_SH(N, coords)
% calculate spherical harmonics up to order N for directions dirs [azi ele;...] (in radiant)
%
dirs = coords.return_positions('spherical');
dirs = [deg2rad(dirs(:,1)), deg2rad(dirs(:,2))];
N_dirs = size(dirs, 1);
N_SH = (N+1)^2;
dirs(:,2) = pi/2 - dirs(:,2); % convert to inclinations
assert(N_SH < N_dirs, ...
['Spherical harmonics: beware that the number of provided ',...
'coordinates is too low to obtain a precise interpolation'])
Y_N = zeros(N_SH, N_dirs);
% n = 0
Lnm = legendre(0, cos(dirs(:,2)'));
Nnm = sqrt(1./(4*pi)) * ones(1,N_dirs);
CosSin = zeros(1,N_dirs);
CosSin(1,:) = ones(1,size(dirs,1));
Y_N(1, :) = Nnm .* Lnm .* CosSin;
% n > 0
idx = 1;
for n=1:N
m = (0:n)';
Lnm = legendre(n, cos(dirs(:,2)'));
condon = (-1).^[m(end:-1:2);m] * ones(1,N_dirs);
Lnm = condon .* [Lnm(end:-1:2, :); Lnm];
mag = sqrt( (2*n+1)*factorial(n-m) ./ (4*pi*factorial(n+m)) );
Nnm = mag * ones(1,N_dirs);
Nnm = [Nnm(end:-1:2, :); Nnm];
CosSin = zeros(2*n+1,N_dirs);
% m=0
CosSin(n+1,:) = ones(1,size(dirs,1));
% m>0
CosSin(m(2:end)+n+1,:) = sqrt(2)*cos(m(2:end)*dirs(:,1)');
% m<0
CosSin(-m(end:-1:2)+n+1,:) = sqrt(2)*sin(m(end:-1:2)*dirs(:,1)');
Ynm = Nnm .* Lnm .* CosSin;
Y_N(idx+1:idx+(2*n+1), :) = Ynm;
idx = idx + 2*n+1;
end
Y_N = Y_N.';
end