This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [gp,gfc] = baumgartner2014_gradientextraction(mp,fc,varargin)
%BAUMGARTNER2014_GRADIENTEXTRACTION Extraction of positive spectral gradients
% Usage: [gp,gfc] = baumgartner2014_gradientextraction(mp,fc)
%
% Input parameters:
% mp : spectral magnitude profile in dB
% fc : center frequencies
%
% Output parameters:
% gp : positive spectral gradient profile
% gfc : center frequencies of gradient profile
%
%
% BAUMGARTNER2014_GRADIENTEXTRACTION(...) is a spectral cue extractor
% inspired by functionality of dorsal cochlear nucleus in cats.
%
% BAUMGARTNER2014_GRADIENTEXTRACTION accepts the following optional parameters:
%
% 'c2',c2 Inhibitory coupling between type II mpd type IV neurons.
% Default is 1.
% 'c4',c4 Inhibitory coupling between AN and type IV neuron.
% Default is 1.
% 'spacing',sp Tonotopical spacing between type IV mpd II neurons in ERBs.
% Default is 1 ERB.
%
% BAUMGARTNER2014_GRADIENTEXTRACTION accepts the following flags:
%
% 'positive' Perform positive spectral gradient extraction (default).
% 'negative' Perform negative spectral gradient extraction.
% 'both' Perform spectral gradient extraction.
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791--802, 2014.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/baumgartner2014_gradientextraction.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: SOFA CircStat M-SIGNAL M-Stats O-Statistics
% #Author: Robert Baumgartner (2014), Acoustics Research Institute, Vienna, Austria
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Parameter Settings
definput.keyvals.c2 = 1;
definput.keyvals.c4 = 1;
definput.keyvals.spacing = 1;
definput.flags.gradient = {'positive','negative','both'};
[flags,kv]=ltfatarghelper({'c2','c4','spacing'},definput,varargin);
% if not(exist('c2','var'))
% c2 = 1; % inhibitory coupling between type II mpd type IV neurons
% end
% c4 = 1; % coupling between AN and type IV neuron
% dilatation = 1; % of tonotopical 1-ERB-spacing between type IV mpd II neurons
%% Calculations
Nb = size(mp,1); % # auditory bands
erb = audfiltbw(fc);
dgpt2 = round(mean(erb(2:end)./diff(fc))*kv.spacing); % tonotopical distance between type IV mpd II neurons
gp = zeros(Nb-dgpt2,size(mp,2),size(mp,3),size(mp,4),size(mp,5)); % type IV output
for b = 1:Nb-dgpt2
gp(b,:,:,:,:) = kv.c4 * mp(b+dgpt2,:,:,:,:) - kv.c2 * mp(b,:,:,:,:);
end
if flags.do_positive
gp(gp<0) = 0; % gp = (gp + c2*abs(gp))/2;
elseif flags.do_negative
gp(gp>0) = 0;
end
% gfc = fc(dgpt2+1:end); % same as AN
gfc = sqrt(fc(1:Nb-dgpt2).*fc(dgpt2+1:end)); % use geometric mean
end