This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [ratio, energy] = hauth2020_srmr(s,varargin)
%HAUTH2020_SRMR Computes the speech-to-reverberation modulation energy ratio of the given signal
%
% Usage:
% [ratio, energy] = hauth2020_srmr(s, fs, 'fast', 0, 'norm', 0, 'minCF', 4, 'maxCF', 128)
%
% Input parameters:
% s: either the path to a WAV file or an array containing a single-channel speech sentence.
% fs: sampling rate of the data in s. If s is the path to a WAV file,
% this parameter has to be omitted.
%
% Output parameters:
% ratio: the SRMR score.
% energy: a 3D matrix with the per-frame modulation spectrum extracted from the input.
%
%
%
% HAUTH2020_SRMR calculates the speech-to-reverberation modulation energy ratio using
% the modulation filterbank described by Ewert and Dau in "Characterizing frequency
% selectivity for envelope fluctuations" (2000).
%
% The code has been derived from the SRMR toolbox where it has been published under the MIT license.
%
%
% Optional parameters:
%
% 'fast',F flag to activate (F = 1)/deactivate (F = 0) the fast implementation.
% The default is 'fast', 0 (this can be omitted).
%
% 'norm',N flag to activate (N = 1)/deactivate (N = 0) the normalization step in the
% modulation spectrum representation, used for variability reduction. The default is 'norm', 0.
%
% 'minCF',cf1 value of the center frequency of the first filter in the modulation filterbank.
% The default value is 4 Hz.
%
% 'maxCF',cf8 value of the center frequency of the first filter in the modulation filterbank.
% The default value is 128 Hz if the normalization is off and 30 Hz if normalization is on.
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/hauth2020_srmr.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Christopher F. Hauth (2020)
% #Author: Dr. Thomas Brand (2020)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Load (if needed) and preprocess file
if ischar(s)
fs = [];
args = {varargin{:}};
else
if isempty(varargin)
error('Second argument must be the sampling rate if input is a vector');
else
if ~isnumeric(varargin{1})
error('Second argument must be the sampling rate if input is a vector');
else
fs = varargin{1};
end
end
args = {varargin{2:end}};
end
fast = 0;
norm = 0;
% Parameter parsing
for i = 1 : 2 : length(args)
name = args{i};
value = args{i+1};
switch name
case 'fast'
fast = value;
case 'norm'
norm = value;
case 'minCF'
minCF = value;
case 'maxCF'
maxCF = value;
case 'single'
single = value;
case 'window'
window = value;
otherwise
error('Wrong parameter in parameter list');
end
end
%% Fixed parameters:
% Modulation filterbank
nModFilters = 8;
if single
nModFilters = 1;
end
if ~exist('minCF','var')
minCF = 4;
end
if ~exist('maxCF', 'var')
if norm == 1
maxCF = 30;
else
maxCF = 128;
end
end
%wLengthS = 0.256; % Window length in seconds.
wLengthS = 0.250;
wLengthS = window;
%wIncS = 0.064; % Window increment in seconds;
wIncS = window;
wIncS = 0;
% Sampling rate for the modulation spectrum representation
if fast
mfs = 400;
else
mfs = fs;
end
wLength = ceil(wLengthS*mfs); % Window length in samples
wInc = ceil(wIncS*mfs); % window increment in samples
%% Cochlear filterbank/envelope computation
if fast
% Compute acoustic band envelopes using gammatonegram
%[tempEnv, ~] = gammatonegram(s, fs, 0.010, 0.0025, nCochlearFilters, lowFreq, fs/2);
% tempEnv = flipud(tempEnv); % make the frequencies have the same order as the time-domain implementation
else
% Pass the signal through the cochlear filter bank to produce the cochlear
% outputs at each critical band.
% The dimensions will be: cochlearOutputs(nCochlearFilters, nSamples), with
% the last being lowest frequency, and the first being highest frequency.
% cochlearOutputs = cochlearFilterBank(fs, nCochlearFilters, lowFreq, s);
% Compute the temporal envelope for each critical band. The dimensions will
% be: temporalEnvelopes(nCochlearFilters, nSamples)
% tempEnv = abs(hilbert(cochlearOutputs'))';
end
tempEnv = abs(hilbert(s));
tempEn = rms(tempEnv);
%tempEnv = tempEnv/tempEn;
%% Modulation spectrum
modFilterCFs = local_computemodulationcfs(minCF, maxCF, nModFilters);
if single
modFilterCFs = local_computemodulationcfs(minCF, maxCF, 1);
end
%w = hamming(wLength);
modulationOutput = local_modulationfilterbank(tempEnv(:,:), modFilterCFs, mfs, 2);%(tempenv(k,:))
for m=1:nModFilters
% Window frames with Hamming window
% modOutFrame = buffer(modulationOutput(m,:), wLength,% (wLength-wInc));
modOutFrame = modulationOutput(m,:);
energy(1,m,:) = sum(modOutFrame.^ 2);
end
%% Modulation energy thresholding
if norm
peak_energy = max(max(mean(energy)));
min_energy = peak_energy*0.00001;
energy(energy < min_energy) = min_energy;
energy(energy > peak_energy) = peak_energy;
end
%% Computation of K*
avg_energy = mean(energy,3);
total_energy = sum(sum(avg_energy));
AC_energy = sum(avg_energy,2);
%AC_perc = AC_energy*100./total_energy;
%AC_perc_cumsum=cumsum(flipud(AC_perc));
%K90perc = find(AC_perc_cumsum>90);
%BW = cochFilt_BW(K90perc(1));
%cutoffs = calc_cutoffs(modFilterCFs, fs, 2);
%if (BW > cutoffs(5)) && (BW < cutoffs(6))
% Kstar=5;
%elseif (BW > cutoffs(6)) && (BW < cutoffs(7))
% Kstar=6;
%elseif (BW > cutoffs(7)) && (BW < cutoffs(8))
% Kstar=7;
%elseif (BW > cutoffs(8))
% Kstar=8;
%end
%% Modulation energy ratio
if single
ratio = sum(avg_energy);
else
ratio = sum(sum(avg_energy(:,1:4)))/sum(sum(avg_energy(:,5:8)));
%ratio = var(sum(modulationOutput));
%ratio = ratio./tempEn;
end
end
function out = local_modulationfilterbank(x, mcf, fs, q)
% y = modulationFilterBank(x, mcf, fs, q)
% -------------------------------------------------------------------------
% in: The input signal to be filtered, expected to be in row-vector form.
% mcf: A vector containing the center frequencies, in Hz, of each filter in
% the filterbank. (Example: [2, 4, 8, 16, 32, 64, 128, 256])
% fs: The sampling rate, in Hz.
% q: The desired Q-value of the filters.
%
% out: The outputs of the modulation filterbank, organized as a matrix of
% dimensions (length(mcf), length(x)).
% -----------------------------------------------
% Filters the input signal through the modulation filterbank described by
% Ewert and Dau in "Characterizing frequency selectivity for envelope
% fluctuations" (2000). The original comment blocks are included.
out = zeros(length(mcf),length(x));
B = zeros(length(mcf),3);
A = zeros(length(mcf),3);
for i = 1:length(mcf)
w0 = 2*pi*mcf(i)/fs;
[b3,a3] = local_makemodulationfilter(w0,q);
B(i,:) = b3; A(i,:) = a3;
out(i,:)= filter(b3, a3, x);
end
end
function cfs = local_computemodulationcfs(minCF, maxCF, nModFilters)
% cfs = computeModulationCFs(minCF, maxCF, nModFilters)
% Computes the center frequencies of the filters needed for the modulation
% filterbank used on the temporal envelope (or modulation spectrum) of the
% cochlear channels.
% -----------------------------------------------
% minCF: Center frequency of the first modulation filter
% maxCF: Center frequency of the last modulation filter
% nModFilters: Number of modulation filters between minCF and maxCF
%
% cfs: The center frequencies of the filters needed for the modulation
% filterbank.
% Spacing factor between filters. Assumes constant (logarithmic) spacing.
spacingFactor = (maxCF/minCF)^(1/(nModFilters-1));
% Computes the center frequencies
cfs = zeros(nModFilters, 1);
cfs(1) = minCF;
for i = 2:nModFilters
cfs(i) = cfs(i - 1)*spacingFactor;
end
end
% [b, a] = makeModulationFilter(w0, q)
% -------------------------------------------------------------------------
% w0: normalized center frequency of the 2nd order bandpass filter
% q: The desired Q-value
%
% b, a: filter coefficients
function [b,a] = local_makemodulationfilter(w0,Q)
% w0 is cf of 2nd-order bandpass filter
% Q is the Q of the filter
W0 = tan(w0/2);
B0 = W0/Q;
b = [B0; 0; -B0];
a = [1 + B0 + W0^2; 2*W0^2 - 2; 1 - B0 + W0^2];
b = b/a(1);
a = a/a(1);
end