This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function output = joergensen2011_combineinformation(input,SNRs,conditions,Nsp)
%JOERGENSEN2011_COMBINEINFORMATION Combine information
% Usage: output = joergensen2011_combineinformation(input,SNRs,conditions,Nsp);
%
% Input parameters:
% input : Cell array with the SNRenv results for each
% processing condition (n),SNR (k), and speech sample (q)
% SNRs : Vector with the SNRs used
% conditions : Vector with the procssing conditions used.
% Nsp : Number of speech samples
%
% Output parameters:
% output : Structure containing the SNRenv
%
% JOERGENSEN2011_COMBINEINFORMATION(input,SNRs,conditions,Nsp) combines
% the SNRenv across modulation and audio filters. It is also possible to
% extracts other information such as the excitation patterns or long-term
% spectra.
%
% The output struct contains the following fields:
%
% .combined_aud [n,k] Matrix with overall SNRenv for each processing condition and SNR
%
% .SNRenvs Cell array {n,k,q} with entries for each condition, SNR, and speech sample. Each entry
% is Matrix with an SNRenv value for each corpus
%
%
% See also: joergensen2011
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/joergensen2011_combineinformation.php
% #StatusDoc: Submitted
% #StatusCode: Submitted
% #Verification: Untrusted
% #Requirements: M-Signal M-Stats
% #Author: Søren Jørgensen (2010)
% #Author: Peter L. Sondergaard (2014)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
if nargin <6
TimeSpectra = 'no';
end
if nargin <5
ExPatterns = 'no';
end
res = input;
for q = 1:Nsp %for each of the speech samples
for n = conditions %for each of the processing conditions
for k = 1:length(SNRs) %for each SNR
Output_tmp = res{n,k,q};
% extracting the SNRenvs from the internal representation:
%
SNRenvs{n,k,q} = Output_tmp.outSNRenvs(:,:);
% ------------------ Combining information --------------------------------
tmp = SNRenvs{n,k,q};
% Converting to linear values:
linear = 10.^(tmp*.1);
linear(find(tmp == 0)) = 0;
combined_mod_tmp = sqrt(sum(linear.^2,1)); % Combining across modulation filters using integration model (Green and Swets 1988)
combined_aud(n,k,q) = (sqrt(sum(combined_mod_tmp.^2)));% Combining across auditory filters
clear combined_mod_tmp;
end
end
end
%
% saving output:
output.combined_aud = combined_aud;
output.SNRenvs = SNRenvs;