This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [APvec] = kelvasa2015_anprocessing(electrodogram, vTime, varargin)
%KELVASA2015_ANPROCESSING AN model used in Kelvasa and Dietz 2015 binaural model
% Usage: [APvec] = kelvasa2015_anprocessing(electrodogram, vTime);
%
% Input parameters:
% electrodogram : N x M matrix of electrode current values in (microA)
% with N being the number of CI electrodes and M being
% a time vector with 1/pulse rate/maxima sampling frequency
%
% vTime : time vector in seconds with M samples
%
%
% Output parameters:
% APvec : N x 2 matrix of AN spikes with Nx1 holding indices
% of the spiking neuron and Nx2 holding corresponding
% spike time in seconds.
%
% KELVASA2015_anprocessing(insig,fs,varargin) computes auditory nerve
% spike times over a given population of AN fibers using a simulated
% electrode nerve interface as detailed in (Fredelake & Hohmann (2012))
%
% References:
% S. Fredelake and V. Hohmann. Factors affecting predicted speech
% intelligibility with cochlear implants in an auditory model for
% electrical stimulation. Hearing Research, 287(1):76 -- 90, 2012.
% [1]http ]
%
% V. Hamacher. Signalverarbeitungsmodelle des elektrisch stimulierten
% Gehörs; 1. Aufl. PhD thesis, RWTH Aachen, Aachen, 2004. Zugl.: Aachen,
% Techn. Hochsch., Diss., 2003.
%
% D. Kelvasa and M. Dietz. Auditory model-based sound direction
% estimation with bilateral cochlear implants. Trends in Hearing,
% 19:2331216515616378, 2015.
%
% References
%
% 1. http://www.sciencedirect.com/science/article/pii/S0378595512000639
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/kelvasa2015_anprocessing.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal M-Stats
% #Author: Daryl Kelvasa (2016)
% #Author: Mathias Dietz (2016)
% #Author: Clara Hollomey (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Get Model Parameters
definput.import={'kelvasa2015'};
[~,kv] = ltfatarghelper({},definput,varargin);
%% Check input paramters
if nargin<3
error('%s: Too few input parameters.',upper(mfilename));
end;
if size(electrodogram,2)~= numel(vTime)
error('%s: Unequal number of time samples in electrodogram and time vector. ',upper(mfilename));
end;
if size(electrodogram,1)~= numel(kv.X_EL)
error('%s: Unequal number of electrodogram electrodes and specified electrode locations. ',upper(mfilename));
end;
%% Implement AN model
%Create vector of electrode pulse length in seconds
numberNeuron = kv.N_nervecells;
numberCycle = numel(vTime);
Tph = ones(numberNeuron,1).*kv.Tph;
%%Prepare Membrane Electrical properties
tauM = kv.TAUCHR/log(2); % the membrane time constant (eq. 6.10)
R = tauM/kv.C; % the resistance of the membrane (eq. 6.10)
%%Prepare voltage threshold
Uth = kv.EFFIRHEO .* R;
%%Prepare matrix of random correlated refractory values
[T_ARP,tau_RRP] = calculate_refracConstants(kv.MT_ARP,kv.MTAU_RRP,numberCycle);
%%Prepare membrane noise
UN = membraneNoise(numberNeuron,1/vTime(2),numberCycle); %1/vTime(2) is the sampling rate of the stimulation pattern
RS0 = kv.RS0_ind * (1 + 792*Tph(1) - 65833*Tph(1)^2); % phase dependent relative spread
%%Apply spatial spread function to electrodogram (eq. 1)
effIamp = kv.V * electrodogram;
%%Calculate depolarisation potential of the cell membrane (eq. 2).
UD = effIamp .* repmat(R .* (1-exp(-Tph./(kv.TAUCHR/log(2)))),...
1,size(effIamp,2));
%%Calculate action potentials
% Init values
numberCycle = numel(vTime);
tLAP = ones(numberNeuron,1)*-99/1000; % arbtrary init value for the last action potential
tAP = ones(numberNeuron,1)*-99/1000; % arbtrary init value for the last action potential
APvec = [];
% Berechnung der Aktionspotentiale
for iPulse = 1:numberCycle
r = calculateRefractoryFunction(vTime(iPulse)-tLAP,T_ARP(:,iPulse),...
tau_RRP(:,iPulse));
% correct the relative spread with the refractory function. the higher r,
% the less is the relative spread
RS0 = RS0./r; % (eq. 6.30)
% calculate the std of the noise
sigma_Tph = Uth.*RS0;
% adjust the noise samples with the standard deviation.
vUN = UN(:,iPulse) .* sigma_Tph;
% calculate the probability of firing (eq. 6.28)
P_AP = 1/2 + 1/2 * erf((UD(:,iPulse) - r.*Uth) ./ (sqrt(2)*sigma_Tph));
% find for all neurons the depolarization current greater than the
% threshold current, multiplied with the refractory function and noised the
% noise samples (eq. 6.27)
indexNeuron = 1:kv.N_nervecells;
bool_AP = (UD(:,iPulse) +vUN >= (r .* Uth) );
bool_noAP = ~bool_AP;
index_AP = indexNeuron(bool_AP);
index_noAP = indexNeuron(bool_noAP);
% the time of the new action potentials...
tp = vTime(iPulse)*ones(kv.N_nervecells,1);
if ~isempty(index_AP)
tAP(index_AP) = tp(index_AP) + ...
kv.TAUCHR(index_AP) .* ...
log2(effIamp(index_AP,iPulse)./(effIamp(index_AP,iPulse) ...
- (1-vUN(index_AP)./Uth(index_AP)).*kv.EFFIRHEO(index_AP)));% eq. 6.17
tAP(index_AP(~isreal(tAP(index_AP)))) = vTime(iPulse); % case that log2 is negative
tAP(index_AP(isinf(tAP(index_AP)))) = vTime(iPulse); % case that neuron fires with no input
[dj] = calculate_latency_dj(kv.ML50,kv.SIGMAL50,P_AP);
tAP(index_AP) = tAP(index_AP) + dj(index_AP);
tLAP(index_AP) = tAP(index_AP);
APvec(end+1:end+length(index_AP),:)= [index_AP' tAP(index_AP)]; %line from Mathias [#nervecell spiketime]
end
% Keep refrac constants constant for neurons that didn't fire
T_ARP(index_noAP,iPulse+1) = T_ARP(index_noAP,iPulse);
tau_RRP(index_noAP,iPulse+1) = tau_RRP(index_noAP,iPulse);
end
end
%% Helper Functions
%%
function n=membraneNoise(N_nervecells,fs,N_lenNoise)
% usage: n=membraneNoise(N_nervecells,fs,N_lenNoise)
% input: N_nervecells = number of AN fibers
% fs = sampling frequency
% N_lenNoise = length of noise in samples
%
% output: n = membrane noise
%
% Generate membrane noise of N elements at a rate of fs [1/s].
%
% The output n will be a row-vector.
% (Calculation is speeded up for fs=7200 and fs=9000)
%
% Author: Stefan Fredelake
% Date: 02-12-2008
% Copyright (C) 2008 Stefan Fredelake, Oldenburg University
% fc: Butterworth corner frequency in Hz
fc= 200;
% fo: Butterworth filter order
%fo= 1;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% generate Gaussian noise with given noise power and length
n = randn(N_nervecells,N_lenNoise);
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if fs > 400 % only filter the Gaussian noise if its sampling frequency is more than twice the desired corner frequency
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% design the filter coefficients + speed up with default parameters
if (fc == 200)
if (fs == 7200)
b=[0.0805,0.0805];
a=[1.0000,-0.8391];
elseif (fs == 9000)
b=[0.0654,0.0654];
a=[1.0000,-0.8693];
else
[b,a]= butter(1,fc/(fs/2));
end;
end;
if (size(n,1)*size(n,2)) > 5e7 %this would be a too large matrix for the filter command
%split it up into 10 packs of cells and filter them separately
number_of_packs = 10;
newvec = zeros(N_nervecells,N_lenNoise);
for iCounter = 1:number_of_packs
newvec(1+(iCounter-1)*size(n,1)/number_of_packs:iCounter*size(n,1)/number_of_packs,:) ...
= filter(b,a,n(1+(iCounter-1)*size(n,1)/number_of_packs:iCounter*size(n,1)/number_of_packs,:),[],2);
end
else
% filter noise
n= filter(b,a,n,[],2);
end
end
end
%%
function [T_ARP,tau_RRP] = calculate_refracConstants(MT_ARP,MTAU_RRP,numberCycle)
% usage: [T_ARP,tau_RRP] = calculateT_ARP_tauRRP(N)
% input: N = number of neurons
%
% output: T_ARP = absolute refractory phase
% tau_RRP = relative refractory phase
%
% generates a random vector with absoulte and relative refractory phases.
% both vectors are correlated with rho = 0.75
%
% Reference: Hamacher 2003 Ph.D.-thesis
%
% Author: Stefan Fredelake
% Date: 02-12-2008
% Copyright (C) 2008 Stefan Fredelake, Oldenburg University
%
N = size(MT_ARP,1);
corrCoef = 0.75;
R = [1 corrCoef; corrCoef 1];
L = chol(R);
T_ARP = zeros(N,numberCycle);
tau_RRP = zeros(N,numberCycle);
std_mT_ARP = 0.15 * repmat(MT_ARP,1,numberCycle);
std_mtau_RRP = 0.15 * repmat(MTAU_RRP,1,numberCycle);
x0 = randn(N,numberCycle);
x1 = x0 .* std_mT_ARP;
x2 = x0 .* std_mtau_RRP;
for ind = 1 : numberCycle
temp = [x1(:,ind),x2(:,ind)] * L;
T_ARP(:,ind) = MT_ARP + temp(:,1);
tau_RRP(:,ind) = MTAU_RRP + temp(:,2);
end
end
%%
function r = calculateRefractoryFunction(t,T_ARP,tau_RRP)
% usage: r = calculateRefractoryFunction(t)
% input: t = time after the last action potential
% T_ARP = absolute refractory phase
% tau_RRP = relative refractory phase
%
% output: r = refractory factor, which will be multiplied with Uth
%
% calculates the refractroy factor, which is needed for the raise of the
% threshold Uth.
%
% Reference: Hamacher 2003 Ph.D.-thesis
%
% Author: Stefan Fredelake
% Date: 02-12-2008
%
q = 0.1; % constant from Hamacher p. 79
p = 0.68; % constant from Hamacher p. 79
t = ones(size(T_ARP)).*t;
r = (1-exp(-(t-T_ARP)./(q*tau_RRP))).*(1-p*exp(-(t-T_ARP)./(tau_RRP)));
r = 1./r;
r(t<=T_ARP) = Inf;
end
%%
function [dj] = calculate_latency_dj(mL50,sigmaL50,P_AP)
% usage: [dj] = calculate_latency_dj(mL50,sigmaL50,P_AP)
% input: mL50 =
% sigmaL50 =
% P_AP =
%
% output: dj = latency
%
% calculates the latency
%
% Reference: Hamacher 2003 Ph.D.-thesis
%
% Author: Stefan Fredelake
% Date: 17-09-2009
N = size(mL50,1);
s1 = -248e-6;
s2 = - 79e-6;
md = mL50 + s1*(P_AP-0.5);
sd = sigmaL50 + s2*(P_AP-0.5);
dj = abs(randn(N,1) .* sd + md);
end