function CF = lyon2011_design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
%LYON2011_DESIGN computes all the coefficients needed to run Lyon's CARFAC model
%
% Usage:
% CF = lyon2011_design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
%
%
% Input parameters:
% n_ears : number of input signals
% fs : sampling frequency [Hz]
% CF_CAR_params : struct, pole-zero filter cascade parameters
% CF_AGC_params : struct, automatic gain control parameters
% CF_IHC_params : struct, inner hair cell parameters
%
% Output parameters:
% CF : filter coefficients
%
% References:
% R. F. Lyon. Cascades of two-pole–two-zero asymmetric resonators are
% good models of peripheral auditory function. J. Acoust. Soc. Am.,
% 130(6), 2011.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/lyon2011_design.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #License: Apache2
% #Author: Richard F. Lyon (2013): original implementation (https://github.com/google/carfac)
% #Author: Amin Saremi (2016): adaptations for the AMT
% #Author: Clara Hollomey (2021): integration in the AMT 1.0
% #Author: Richard Lyon (2022): bug fixes for AMT
% #Author: Mihajlo Velimirovic (2022): implementation of the option ihc_potential
% This file is licensed unter the Apache License Version 2.0 which details can
% be found in the AMT directory "licences" and at
% <http://www.apache.org/licenses/LICENSE-2.0>.
% You must not use this file except in compliance with the Apache License
% Version 2.0. Unless required by applicable law or agreed to in writing, this
% file is distributed on an "as is" basis, without warranties or conditions
% of any kind, either express or implied.
if nargin < 1
n_ears = 1; % if more than 1, make them identical channels;
% then modify the design if necessary for different reasons
end
if nargin < 2
fs = 22050;
end
if nargin < 3
CF_CAR_params = struct( ...
'velocity_scale', 0.1, ... % for the velocity nonlinearity
'v_offset', 0.04, ... % offset gives a quadratic part
'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels
'max_zeta', 0.35, ... % maximum damping factor in mid-freq channels
'first_pole_theta', 0.85*pi, ...
'zero_ratio', sqrt(2), ... % how far zero is above pole
'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
'ERB_per_step', 0.5, ... % assume G&M's ERB formula
'min_pole_Hz', 30, ...
'ERB_break_freq', 165.3, ... % 165.3 is Greenwood map's break freq.
'ERB_Q', 1000/(24.7*4.37)); % Glasberg and Moore's high-cf ratio
end
if nargin < 4
CF_AGC_params = struct( ...
'n_stages', 4, ...
'time_constants', 0.002 * 4.^(0:3), ...
'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
'AGC1_scales', 1.0 * sqrt(2).^(0:3), ... % in units of channels
'AGC2_scales', 1.65 * sqrt(2).^(0:3), ... % spread more toward base
'AGC_mix_coeff', 0.5);
end
if nargin < 5
% HACK: these constants control the defaults
one_cap = 1; % bool; 1 for Allen model, as text states we use
just_hwr = 0; % bool; 0 for normal/fancy IHC; 1 for HWR
CF_IHC_params = struct( ...
'just_hwr', just_hwr, ... % not just a simple HWR
'one_cap', one_cap, ... % bool; 0 for new two-cap hack
'ac_corner_Hz', 20, ... % AC couple at 20 Hz corner
'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
'tau_out', 0.0005, ... % depletion tau is pretty fast
'tau_in', 0.010, ... % recovery tau is slower
'tau1_out', 0.000500, ... % depletion tau is fast 500 us
'tau1_in', 0.000200, ... % recovery tau is very fast 200 us
'tau2_out', 0.001, ... % depletion tau is pretty fast 1 ms
'tau2_in', 0.010) % recovery tau is slower 10 ms
end
% first figure out how many filter stages (PZFC/CARFAC channels):
pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
n_ch = 0;
while pole_Hz > CF_CAR_params.min_pole_Hz
n_ch = n_ch + 1;
% pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
% lyon2011_erbhz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
f2erb(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
end
% Now we have n_ch, the number of channels, so can make the array
% and compute all the frequencies again to put into it:
pole_freqs = zeros(n_ch, 1);
pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
for ch = 1:n_ch
pole_freqs(ch) = pole_Hz;
% pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
% lyon2011_erbhz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
f2erb(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
end
% Now we have n_ch, the number of channels, and pole_freqs array.
max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
% Convert to include an ear_array, each w coeffs and state...
CAR_coeffs = local_designfilters(CF_CAR_params, fs, pole_freqs);
AGC_coeffs = local_designagc(CF_AGC_params, fs, n_ch);
IHC_coeffs = local_designihc(CF_IHC_params, fs, n_ch);
% Copy same designed coeffs into each ear (can do differently in the
% future, e.g. for unmatched OHC_health).
for ear = 1:n_ears
ears(ear).CAR_coeffs = CAR_coeffs;
ears(ear).AGC_coeffs = AGC_coeffs;
ears(ear).IHC_coeffs = IHC_coeffs;
end
CF = struct( ...
'fs', fs, ...
'max_channels_per_octave', max_channels_per_octave, ...
'CAR_params', CF_CAR_params, ...
'AGC_params', CF_AGC_params, ...
'IHC_params', CF_IHC_params, ...
'n_ch', n_ch, ...
'pole_freqs', pole_freqs, ...
'ears', ears, ...
'n_ears', n_ears, ...
'open_loop', 0, ...
'linear_car', 0);
%% Design the filter coeffs:
function CAR_coeffs = local_designfilters(CAR_params, fs, pole_freqs)
n_ch = length(pole_freqs);
% the filter design coeffs:
% scalars first:
CAR_coeffs = struct( ...
'n_ch', n_ch, ...
'velocity_scale', CAR_params.velocity_scale, ...
'v_offset', CAR_params.v_offset ...
);
% don't really need these zero arrays, but it's a clue to what fields
% and types are needed in other language implementations:
CAR_coeffs.r1_coeffs = zeros(n_ch, 1);
CAR_coeffs.a0_coeffs = zeros(n_ch, 1);
CAR_coeffs.c0_coeffs = zeros(n_ch, 1);
CAR_coeffs.h_coeffs = zeros(n_ch, 1);
CAR_coeffs.g0_coeffs = zeros(n_ch, 1);
CAR_coeffs.OHC_health = ones(n_ch, 1); % 0 to 1 to derate OHC activity.
% zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
% and that a is here 1 / (1+f) where h = f*c.
% solve for f: 1/zero_ratio^2 = 1 / (1+f)
% zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
f = CAR_params.zero_ratio^2 - 1; % nominally 1 for half-octave
% Make pole positions, s and c coeffs, h and g coeffs, etc.,
% which mostly depend on the pole angle theta:
theta = pole_freqs .* (2 * pi / fs);
c0 = sin(theta);
a0 = cos(theta);
% different possible interpretations for min-damping r:
% r = exp(-theta * CF_CAR_params.min_zeta).
% Compress theta to give somewhat higher Q at highest thetas:
ff = CAR_params.high_f_damping_compression; % 0 to 1; typ. 0.5
x = theta/pi;
theta = pi * (x - ff * x.^3); % when ff is 0, this is just theta,
% and when ff is 1 it goes to zero at theta = pi.
max_zeta = CAR_params.max_zeta;
CAR_coeffs.r1_coeffs = (1 - theta .* max_zeta); % "r1" for the max-damping condition
min_zeta = CAR_params.min_zeta;
if min_zeta <= 0 % Use this to do a new design strategy
local_low_level_q = pole_freqs ./ lyon2011_erbhz( ...
pole_freqs, CAR_params.ERB_break_freq, CAR_params.ERB_Q);
% Number of overlapping channels is about ERB_per_step^-1, so this:
min_zetas = CAR_params.ERB_per_step^-0.5 ./ (2*local_low_level_q);
min_zetas = min(min_zetas, 0.75*max_zeta); % Keep some low CF action.
% "r1" for the max-damping condition
CAR_coeffs.r1_coeffs = exp(-theta .* max_zeta);
r0_coeffs = exp(-theta .* min_zetas); % min_damping condition.
CAR_coeffs.zr_coeffs = r0_coeffs - CAR_coeffs.r1_coeffs;
else
% Increase the min damping where channels are spaced out more, by pulling
% toward lyon2011_erbhz/pole_freqs (close to 0.1 at high f)
min_zetas = min_zeta + 0.25*(f2erb(pole_freqs, ...
CAR_params.ERB_break_freq, CAR_params.ERB_Q) ./ pole_freqs - min_zeta);
CAR_coeffs.r1_coeffs = (1 - theta .* max_zeta); % "r1" for the max-damping condition
CAR_coeffs.zr_coeffs = theta .* ...
(max_zeta - min_zetas); % how r relates to undamping
end
% undamped coupled-form coefficients:
CAR_coeffs.a0_coeffs = a0;
CAR_coeffs.c0_coeffs = c0;
% the zeros follow via the h_coeffs
h = c0 .* f;
CAR_coeffs.h_coeffs = h;
relative_undamping = CAR_coeffs.OHC_health; % Typically just ones.
% this function needs to take CAR_coeffs even if we haven't finished
% constucting it by putting in the g0_coeffs:
CAR_coeffs.g0_coeffs = lyon2011_stageg(CAR_coeffs, relative_undamping);
%% the AGC design coeffs:
function AGC_coeffs = local_designagc(AGC_params, fs, n_ch)
n_AGC_stages = AGC_params.n_stages;
% AGC1 pass is smoothing from base toward apex;
% AGC2 pass is back, which is done first now (in double exp. version)
AGC1_scales = AGC_params.AGC1_scales;
AGC2_scales = AGC_params.AGC2_scales;
decim = 1;
total_DC_gain = 0;
%%
% Convert to vector of AGC coeffs
AGC_coeffs = struct([]);
for stage = 1:n_AGC_stages
AGC_coeffs(stage).n_ch = n_ch;
AGC_coeffs(stage).n_AGC_stages = n_AGC_stages;
AGC_coeffs(stage).AGC_stage_gain = AGC_params.AGC_stage_gain;
AGC_coeffs(stage).decimation = AGC_params.decimation(stage);
tau = AGC_params.time_constants(stage); % time constant in seconds
decim = decim * AGC_params.decimation(stage); % net decim to this stage
% epsilon is how much new input to take at each update step:
AGC_coeffs(stage).AGC_epsilon = 1 - exp(-decim / (tau * fs));
% effective number of smoothings in a time constant:
ntimes = tau * (fs / decim); % typically 5 to 50
% decide on target spread (variance) and delay (mean) of impulse
% response as a distribution to be convolved ntimes:
% TODO (dicklyon): specify spread and delay instead of scales???
delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
% get pole positions to better match intended spread and delay of
% [[geometric distribution]] in each direction (see wikipedia)
u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
dp = delay * (1 - 2*p +p^2)/2;
polez1 = p - dp;
polez2 = p + dp;
AGC_coeffs(stage).AGC_polez1 = polez1;
AGC_coeffs(stage).AGC_polez2 = polez2;
% try a 3- or 5-tap FIR as an alternative to the double exponential:
n_taps = 0;
FIR_OK = 0;
n_iterations = 1;
while ~FIR_OK
switch n_taps
case 0
% first attempt a 3-point FIR to apply once:
n_taps = 3;
case 3
% second time through, go wider but stick to 1 iteration
n_taps = 5;
case 5
% apply FIR multiple times instead of going wider:
n_iterations = n_iterations + 1;
if n_iterations > 16
error('Too many n_iterations in lyon2011_designagc');
end
otherwise
% to do other n_taps would need changes in lyon2011_spatialsmooth
% and in Design_FIR_coeffs
error('Bad n_taps in lyon2011_designagc');
end
[AGC_spatial_FIR, FIR_OK] = local_designFIRcoeffs( ...
n_taps, spread_sq, delay, n_iterations);
end
% when FIR_OK, store the resulting FIR design in coeffs:
AGC_coeffs(stage).AGC_spatial_iterations = n_iterations;
AGC_coeffs(stage).AGC_spatial_FIR = AGC_spatial_FIR;
AGC_coeffs(stage).AGC_spatial_n_taps = n_taps;
% accumulate DC gains from all the stages, accounting for stage_gain:
total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
% TODO (dicklyon) -- is this the best binaural mixing plan?
if stage == 1
AGC_coeffs(stage).AGC_mix_coeffs = 0;
else
AGC_coeffs(stage).AGC_mix_coeffs = AGC_params.AGC_mix_coeff / ...
(tau * (fs / decim));
end
end
% adjust stage 1 detect_scale to be the reciprocal DC gain of the AGC filters:
AGC_coeffs(1).detect_scale = 1 / total_DC_gain;
%%
function [FIR, OK] = local_designFIRcoeffs(n_taps, delay_variance, ...
mean_delay, n_iter)
% function [FIR, OK] = Design_FIR_coeffs(n_taps, delay_variance, ...
% mean_delay, n_iter)
% The smoothing function is a space-domain smoothing, but it considered
% here by analogy to time-domain smoothing, which is why its potential
% off-centeredness is called a delay. Since it's a smoothing filter, it is
% also analogous to a discrete probability distribution (a p.m.f.), with
% mean corresponding to delay and variance corresponding to squared spatial
% spread (in samples, or channels, and the square thereof, respecitively).
% Here we design a filter implementation's coefficient via the method of
% moment matching, so we get the intended delay and spread, and don't worry
% too much about the shape of the distribution, which will be some kind of
% blob not too far from Gaussian if we run several FIR iterations.
% reduce mean and variance of smoothing distribution by n_iterations:
mean_delay = mean_delay / n_iter;
delay_variance = delay_variance / n_iter;
switch n_taps
case 3
% based on solving to match mean and variance of [a, 1-a-b, b]:
a = (delay_variance + mean_delay*mean_delay - mean_delay) / 2;
b = (delay_variance + mean_delay*mean_delay + mean_delay) / 2;
FIR = [a, 1 - a - b, b];
OK = FIR(2) >= 0.25;
case 5
% based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
a = ((delay_variance + mean_delay*mean_delay)*2/5 - mean_delay*2/3) / 2;
b = ((delay_variance + mean_delay*mean_delay)*2/5 + mean_delay*2/3) / 2;
% first and last coeffs are implicitly duplicated to make 5-point FIR:
FIR = [a/2, 1 - a - b, b/2];
OK = FIR(2) >= 0.15;
otherwise
error('Bad n_taps in AGC_spatial_FIR');
end
%% the IHC design coeffs:
function IHC_coeffs = local_designihc(IHC_params, fs, n_ch)
if IHC_params.just_hwr
IHC_coeffs = struct( ...
'n_ch', n_ch, ...
'just_hwr', 1);
else
if IHC_params.one_cap
gmax = lyon2011_detect(10); % output conductance at a high level
rmin = 1 / gmax;
c = IHC_params.tau_out * gmax;
ri = IHC_params.tau_in / c;
% to get approx steady-state average, double rmin for 50% duty cycle
saturation_current = 1 / (2/gmax + ri);
% also consider the zero-signal equilibrium:
g0 = lyon2011_detect(0);
r0 = 1 / g0;
rest_current = 1 / (ri + r0);
cap_voltage = 1 - rest_current * ri;
IHC_coeffs = struct( ...
'n_ch', n_ch, ...
'just_hwr', 0, ...
'ac_coeff', 2 * pi * IHC_params.ac_corner_Hz / fs, ...
'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
'out_rate', rmin / (IHC_params.tau_out * fs), ...
'in_rate', 1 / (IHC_params.tau_in * fs), ...
'one_cap', IHC_params.one_cap, ...
'output_gain', 1 / (saturation_current - rest_current), ...
'rest_output', rest_current / (saturation_current - rest_current), ...
'rest_cap', cap_voltage);
% one-channel state for testing/verification:
IHC_state = struct( ...
'cap_voltage', IHC_coeffs.rest_cap, ...
'lpf1_state', 0, ...
'lpf2_state', 0, ...
'ihc_accum', 0);
else
g1max = lyon2011_detect(10); % receptor conductance at high level
r1min = 1 / g1max;
c1 = IHC_params.tau1_out * g1max; % capacitor for min depletion tau
r1 = IHC_params.tau1_in / c1; % resistance for recharge tau
% to get approx steady-state average, double r1min for 50% duty cycle
saturation_current1 = 1 / (2*r1min + r1); % Approximately.
% also consider the zero-signal equilibrium:
g10 = lyon2011_detect(0);
r10 = 1/g10;
rest_current1 = 1 / (r1 + r10);
cap1_voltage = 1 - rest_current1 * r1; % quiescent/initial state
% Second cap similar, but using receptor voltage as detected signal.
max_vrecep = r1 / (r1min + r1); % Voltage divider from 1.
% Identity from receptor potential to neurotransmitter conductance:
g2max = max_vrecep; % receptor resistance at very high level
r2min = 1 / g2max;
c2 = IHC_params.tau2_out * g2max; % capacitor for min depletion tau
r2 = IHC_params.tau2_in / c2; % resistance for recharge tau
% to get approx steady-state average, double r2min for 50% duty cycle
saturation_current2 = 1 / (2 * r2min + r2);
% also consider the zero-signal equilibrium:
rest_vrecep = r1 * rest_current1;
g20 = rest_vrecep;
r20 = 1 / g20;
rest_current2 = 1 / (r2 + r20);
cap2_voltage = 1 - rest_current2 * r2; % quiescent/initial state
IHC_coeffs = struct(...
'n_ch', n_ch, ...
'just_hwr', 0, ...
'ac_coeff', 2 * pi * IHC_params.ac_corner_Hz / fs, ...
'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
'out1_rate', r1min / (IHC_params.tau1_out * fs), ...
'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
'out2_rate', r2min / (IHC_params.tau2_out * fs), ...
'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
'one_cap', IHC_params.one_cap, ...
'output_gain', 1 / (saturation_current2 - rest_current2), ...
'rest_output', rest_current2 / (saturation_current2 - rest_current2), ...
'rest_cap2', cap2_voltage, ...
'rest_cap1', cap1_voltage);
% one-channel state for testing/verification:
IHC_state = struct( ...
'cap1_voltage', IHC_coeffs.rest_cap1, ...
'cap2_voltage', IHC_coeffs.rest_cap2, ...
'lpf1_state', 0, ...
'lpf2_state', 0, ...
'ihc_accum', 0);
end
end
% function g = lyon2011_stageg(CAR_coeffs, relative_undamping)
% % function g = lyon2011_stageg(CAR_coeffs, relative_undamping)
% % Return the stage gain g needed to get unity gain at DC
%
% r1 = CAR_coeffs.r1_coeffs; % at max damping
% a0 = CAR_coeffs.a0_coeffs;
% c0 = CAR_coeffs.c0_coeffs;
% h = CAR_coeffs.h_coeffs;
% zr = CAR_coeffs.zr_coeffs;
% r = r1 + zr .* relative_undamping;
% g = (1 - 2*r.*a0 + r.^2) ./ (1 - 2*r.*a0 + h.*r.*c0 + r.^2);