This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [k,v]=may2011_findlocalpeaks(x,m,w)
%MAY2011_FINDLOCALPEAKS finds peaks with optional quadratic interpolation
%
% Input parameters:
% X : is the input signal
% M : mode ('q' performs quadratic interpolation, 'v' finds
% valleys instead of peaks)
% W : is the width tolerance; a peak will be eliminated if there is
% a higher peak within +-W samples
%
% Output parameters:
% K : are the peak locations in X (fractional if M='q')
% V : are the peak amplitudes: if M='q' the amplitudes will be interpolated
% whereas if M~='q' then V=X(K).
%
% Outputs are column vectors regardless of whether X is row or column.
% If there is a plateau rather than a sharp peak, the routine will place the
% peak in the centre of the plateau. When the W input argument is specified,
% the routine will eliminate the lower of any pair of peaks whose separation
% is <=W; if the peaks have exactly the same height, the second one will be eliminated.
% All peak locations satisfy 1<K<length(X).
%
% If no output arguments are specified, the results will be plotted.
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/may2011_findlocalpeaks.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Mike Brookes (2005)
% #Author: Tobias May (2014)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
if nargin<2
m=' ';
end
nx=length(x);
if any(m=='v')
x=-x(:); % invert x if searching for valleys
else
x=x(:); % force to be a column vector
end
dx=x(2:end)-x(1:end-1);
r=find(dx>0);
f=find(dx<0);
if length(r)>0 & length(f)>0 % we must have at least one rise and one fall
dr=r;
dr(2:end)=r(2:end)-r(1:end-1);
rc=repmat(1,nx,1);
rc(r+1)=1-dr;
rc(1)=0;
rs=cumsum(rc); % = time since the last rise
df=f;
df(2:end)=f(2:end)-f(1:end-1);
fc=repmat(1,nx,1);
fc(f+1)=1-df;
fc(1)=0;
fs=cumsum(fc); % = time since the last fall
rp=repmat(-1,nx,1);
rp([1; r+1])=[dr-1; nx-r(end)-1];
rq=cumsum(rp); % = time to the next rise
fp=repmat(-1,nx,1);
fp([1; f+1])=[df-1; nx-f(end)-1];
fq=cumsum(fp); % = time to the next fall
k=find((rs<fs) & (fq<rq) & (floor((fq-rs)/2)==0)); % the final term centres peaks within a plateau
v=x(k);
if any(m=='q') % do quadratic interpolation
b=0.5*(x(k+1)-x(k-1));
a=x(k)-b-x(k-1);
j=(a>0); % j=0 on a plateau
v(j)=x(k(j))+0.25*b(j).^2./a(j);
k(j)=k(j)+0.5*b(j)./a(j);
k(~j)=k(~j)+(fq(k(~j))-rs(k(~j)))/2; % add 0.5 to k if plateau has an even width
end
% now purge nearby peaks
if nargin>2
j=find(k(2:end)-k(1:end-1)<=w);
while any(j)
j=j+(v(j)>=v(j+1));
k(j)=[];
v(j)=[];
j=find(k(2:end)-k(1:end-1)<=w);
end
end
else
k=[];
v=[];
end
if any(m=='v')
v=-v; % invert peaks if searching for valleys
end
if ~nargout
if any(m=='v')
x=-x; % re-invert x if searching for valleys
ch='v';
else
ch='^';
end
plot(1:nx,x,'-',k,v,ch);
end