function [template, target] = reijniers2014_featureextraction(SOFAtemplate, varargin)
%REIJNIERS2014_FEATUREEXTRACTION - extract HRTF using gammatone frequency bands and ITDs from SOFA object
%
% Usage: [template, target] = reijniers2014_featureextraction(SOFAobj)
%
% Input parameters:
% SOFAtemplate: Struct in SOFA format with HRTFs
%
% Output parameters:
% template : template struct with spectral components
% target : template struct with spectral components
%
% REIJNIERS2014_FEATUREEXTRACTION(...) computes temporally integrated
% spectral magnitude profiles and itd.
%
% REIJNIERS2014_FEATUREEXTRACTION accepts the following optional parameters:
%
% 'source_ir',source_ir Set the sound source's impulse reponse.
% Default value a broadband sound source
% with 0dB amplitude.
%
% 'fs',fs Set the sampling rate to fs.
% Default value takes the fs of SOFA template object.
%
% 'fb_ch',fb_ch Set the number of channels for the gammatone
% filterbank to fb_ch.
% Default value is 30.
%
% 'fb_low',fb_low Set the lowest frequency in the filterbank to
% fb_low. Default value is 300 Hz.
%
% 'fb_high',fb_high Set the highest frequency in the filterbank to
% fhigh. Default value is 15000 Hz.
%
% 'ir_pad',len Define the padding length for the impulse responses
% before being convolved with gammatone filters.
% Default value is 0.05 s.
%
% 'targ_az',targ_az Set the azimuth of a set of sound sources
% to targ_el. It can be a scalar or a column vector
% Default value is []: all target azimuths are
% used. Must have the same size of targ_el.
%
% 'targ_el',targ_el Set the elevation of a set of sound sources
% to targ_el. It can be a scalar or a column vector
% Default value is []: all target elevations are
% used. Must have the same size of targ_az.
%
% See also: exp_reijniers2014 reijniers2014
%
% References:
% R. Barumerli, P. Majdak, R. Baumgartner, J. Reijniers, M. Geronazzo,
% and F. Avanzini. Predicting directional sound-localization of human
% listeners in both horizontal and vertical dimensions. In Audio
% Engineering Society Convention 148. Audio Engineering Society, 2020.
%
% R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo, and F. Avanzini.
% Evaluation of a human sound localization model based on bayesian
% inference. In Forum Acusticum, 2020.
%
% J. Reijniers, D. Vanderleist, C. Jin, C. S., and H. Peremans. An
% ideal-observer model of human sound localization. Biological
% Cybernetics, 108:169--181, 2014.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/reijniers2014_featureextraction.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB SOFA M-Stats M-Image
% #Author: Michael Sattler
% #Author: Roberto Barumerli (2020)
% #Author: Clara Hollomey (2021)
% (adapted from code provided by Jonas Reijniers)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.import={'amt_cache'};
definput.flags.disp = {'no_debug','debug'};
% sampling rate
definput.keyvals.fs = SOFAtemplate.Data.SamplingRate;
% gammatone filterbank parameters
definput.keyvals.fb_ch = 30;
definput.keyvals.fb_low = 300;
definput.keyvals.fb_high = 15e3;
% 50ms' pad
definput.keyvals.ir_pad = 0.05*definput.keyvals.fs;
definput.keyvals.targ_az = [];
definput.keyvals.targ_el = [];
% sound source
% broad band sound source at 0dB
definput.keyvals.source_ir = 0;
[flags, kv] = ltfatarghelper({'source_ir', 'fs', 'fb_ch','fb_low','fb_high', ...
'ir_pad', 'targ_az','targ_el'}, definput, varargin);
if(kv.fs ~= SOFAtemplate.Data.SamplingRate)
assert(kv.fs ~= SOFAtemplate.Data.SamplingRate)
end
% Get directions from SOFA file and convert them in cartesian
% coordinates
coords = SOFAcalculateAPV(SOFAtemplate);
% assume position on a sphere with radius of 1 meter
coords(:, 3) = 1;
% convert polar to cartesian
template_coords = zeros(size(SOFAtemplate.SourcePosition));
[template_coords(:,1), template_coords(:,2), template_coords(:,3)] = ...
sph2cart(coords(:,1)*pi/180,coords(:,2)*pi/180,coords(:,3));
%% ITD computation
% do alignment as was performed by Katz 2014
template_itd = itdestimator(SOFAtemplate,'Threshold', 'lp', ...
'upper_cutfreq', 3000, 'butterpoly', 10, 'threshlvl', -10, flags.disp);
%% Pad HRIR vector
time_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'N');
dir_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'M');
ear_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'R');
% permute in order to use ufilterbankz
hrir = permute(double(SOFAtemplate.Data.IR),[time_idx, dir_idx, ear_idx]);
% pad to account for longer filters in the filterbank
pad_mat = zeros(kv.ir_pad - SOFAtemplate.API.('N'), SOFAtemplate.API.('M'), SOFAtemplate.API.('R'));
hrir = cat(1, hrir, pad_mat);
%% Gammatone filterbank
fc = fc_ERB(kv.fb_ch, kv.fb_low, kv.fb_high);
% if the number of channels exceed the fb_high
% the vector will be shorter than kv.fb_ch
kv.fb_ch = length(fc);
[bgt,agt] = gammatone(fc,kv.fs,'complex');
%% H_L and H_R generation
template_hrtf = 2*real(ufilterbankz(bgt,agt,hrir(:,:)));
hrtf_size = size(hrir);
template_hrtf = reshape(template_hrtf,[hrtf_size(1),kv.fb_ch,hrtf_size(2),hrtf_size(3)]);
clear hrir
% Averaging over time (RMS)
template_hrtf = 20*log10(squeeze(rms(template_hrtf, 'dim', 1))+eps); % in dB
% normalize
template_hrtf = template_hrtf - max(template_hrtf(:));
%% S computation
if isequal(kv.source_ir, definput.keyvals.source_ir)
S = zeros(kv.fb_ch, 1);
else
% if S is not the default value compute its spectrum
% pad to account for longer filters in the filterbank
temp = zeros(kv.ir_pad + length(kv.source_ir), 2);
temp(1:length(kv.source_ir),:) = kv.source_ir;
kv.source_ir = temp;
% kv.source_ir = padarray(kv.source_ir(:), ...
% [abs(kv.ir_pad - length(kv.source_ir)) 0],'post');
S = 2*real(ufilterbankz(bgt,agt,kv.source_ir));
% Averaging over time (RMS)
S = 20*log10(squeeze(rms(S, 'dim', 1))+eps);
end
% create struct
template.fs = kv.fs;
template.fc = fc;
template.itd = template_itd;
template.H = template_hrtf;
template.coords = template_coords;
% if target required
if nargout > 1
%% target computation
if(~isempty(kv.targ_az) || ~isempty(kv.targ_el))
assert(numel(kv.targ_az)==numel(kv.targ_el))
target_idx = SOFAfind(SOFAtemplate, kv.targ_az, kv.targ_el);
if(numel(target_idx) ~= numel(kv.targ_az))
amt_disp(['Requested HRTF''s points: ',numel(kv.targ_az)*numel(kv.targ_el),' Found:',numel(target_idx)],flags.disp);
end
target_hrtf = template_hrtf(:,target_idx,:);
target_itd = template_itd(target_idx);
target_coords = template_coords(target_idx, :);
else
target_hrtf = template_hrtf;
target_itd = template_itd;
target_coords = template_coords;
end
target.fs = kv.fs;
target.fc = fc;
target.itd = target_itd;
target.S = S;
target.H = target_hrtf;
target.coords = target_coords;
end
function fc = fc_ERB(n_channels, freq_start, freq_end)
% ERB computation according to Moore and Glasberg 1983
c = 1;
fc = zeros(n_channels, 1);
fc(1) = freq_start;
while (c < n_channels)
c =c + 1;
fc(c) = fc(c-1) + 6.23 * (fc(c-1)/1000)^2 + 93.39 * (fc(c-1)/1000) + 28.52;
end
fc(fc > freq_end) = [];