This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [inf, out] = relanoiborra2019_mfbtd(in,lmf,umf,style,fs)
%RELANOIBORRA2019_MFBTD - applies modulation filterbank
%
% Usage: [inf, out] = mfbtd(in,lmf,umf,style,fs)
%
% Input parameters:
% in : input column vector.
% lmf : lowest modulation-filter center frequency,
% if 0 the output of a 2nd-order
% Butterworth lowpass filter is additionally computed.
% umf : highest modulation-filter center frequency,
% for typical applications choose umf = 1500.
% If lmf = umf only the output of a single filter
% at lmf is computed.
% style : determines fc of the lowpass filter: 1 = 2.5 Hz, 2 = 7.5 Hz.
% fs : sampling rate in Hz,
% should be greater than 8000 Hz to avoid aliasing errors.
%
% Output parameters:
% inf : center frequencies of the modulation filters
% out : each column of martrix out contains the output of
% a single modulation filter
%
% RELANOIBORRA2019_MFBTD applies a modulation filterbank as used in Relano-Iborra et al. 2019
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/relanoiborra2019_mfbtd.php
% #Author: Stephan Ewert and Torsten Dau, Universitaet Oldenburg
% #Author: Clara Hollomey (2021): adapted to the AMT
% #Author: Piotr Majdak (2021): adapted to the AMT 1.0
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
if fs < 8000
warning('sample rate lower than 8000 Hz')
end
Q = 2;
bw = 5;
ex=(1+1/(2*Q))/(1-1/(2*Q));
%lpcut = 150;
%ex=((3+sqrt(5))/2)^(1/den);
if lmf == 0
sw = 1;
switch style
case 1
startmf = 5;
b2lpcut = 2.5;
wb2lp = 2*pi*b2lpcut/fs;
[b2,a2] = local_solp(wb2lp,1/sqrt(2));
case 2
startmf = 10;
b2lpcut = 7.5;
wb2lp = 2*pi*b2lpcut/fs;
[b2,a2] = local_solp(wb2lp,1/sqrt(2));
end
elseif lmf > 0
startmf = lmf;
sw = 2;
end
if lmf == umf
mf = startmf;
sw = 0;
if lmf == 0
sw =3;
end
else
if startmf >= 10
tmp = fix(log(umf/startmf)/log(ex));
mf = 0:tmp;
mf = ex.^mf;
mf = startmf*mf;
else
tmp = fix((min(umf,10) - startmf)/bw); %changed
tmp = 0:tmp;
mf = startmf + 5*tmp;
tmp2 = (mf(end)+bw/2)/(1-1/(2*Q));
tmp = fix(log(umf/tmp2)/log(ex));
tmp = 0:tmp;
tmp = ex.^tmp;
mf=[mf tmp2*tmp];
end
end
% 150 Hz LP
[b1,a1] = butter(1,150/(fs/2));
outtmp = filter(b1,a1,in);
% size(outtmp)
% pause
% No LP
% outtmp=in; % no LP
switch sw
case 0 % only one modulation filter
w0 = 2*pi*mf/fs;
if mf < 10
[b3,a3] = efilt(w0,2*pi*bw/fs);
else
[b3,a3] = efilt(w0,w0/Q);
end
% out = 2*filter(b3,a3,in);
out = 2*filter(b3,a3,outtmp);
inf = mf;
case 1 % lowpass and modulation filter(s)
out = zeros(size(in,1),size(in,2),length(mf)+1);
% out(:,:,1) = filter(b2,a2,in);
out(:,:,1) = filter(b2,a2,outtmp);
for i=1:length(mf)
w0 = 2*pi*mf(i)/fs;
if mf(i) < 10
[b3,a3] = local_efilt(w0,2*pi*bw/fs);
else
[b3,a3] = local_efilt(w0,w0/Q);
end
% out(:,:,i+1) = 2*filter(b3,a3,in);
out(:,:,i+1) = 2*filter(b3,a3,outtmp);
end
inf = [0 mf];
case 2 % only modulation filters
out = zeros(length(in),length(mf));
for i=1:length(mf)
w0 = 2*pi*mf(i)/fs;
if mf(i) < 10
[b3,a3] = local_efilt(w0,2*pi*bw/fs);
else
[b3,a3] = local_efilt(w0,w0/Q);
end
% out(:,i) = 2*filter(b3,a3,in);
out(:,i) = 2*filter(b3,a3,outtmp);
end
inf = mf;
case 3 % only lowpass
% out = filter(b2,a2,in);
out = filter(b2,a2,outtmp);
inf = 0;
end
% subfunctions
% complex frequency shifted first order lowpass
function [b,a] = local_efilt(w0,bw)
e0 = exp(-bw/2);
b = 1 - e0;
a = [1, -e0*exp(1i*w0)];
% second order Butterworth lowpass filter
function [b,a] = local_solp(w0,Q)
W0 = tan(w0/2);
b = [1; 2; 1];
a = [1 + 1/(Q*W0) + 1/W0^2; -2/W0^2 + 2; 1 - 1/(Q*W0) + 1/W0^2];
b = b/a(1);
a = a/a(1);
% % first order lowpass filter (from mfb2.m - MJ)
% function [b,a] = local_folp(w0)
%
% W0 = tan(w0/2);
%
% b = [W0, W0]/(1 + W0);
% a = [1,(W0 - 1)/(1 + W0)];
%