function plot_mckenzie2022(spectralDifference,testDirections)
%PLOT_MCKENZIE2022 calculate max and minimum values
%
% Usage:
% plot_mckenzie2022(spectralDifference,testDirections);
%
% Input parameters:
% spectralDifference : vector of spectral differences
% testDirections : vector of test directions
%
% This function generates a spherical heatmap.
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/plot/plot_mckenzie2022.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Stats M-Curvefit
% #Author: Thomas McKenzie (2022)
% #Author: Cal Armstrong (2022)
% #Author: Lauren Ward (2022)
% #Author: Damian Murphy (2022)
% #Author: Gavin Kearney (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
maxValue = max(spectralDifference);
minValue = min(spectralDifference);
figure('position',[100,100,1200 400]);
for i = 1:length(spectralDifference)/length(testDirections)
subplot(2,3,i)
% plot values on spherical map
local_heatmap_plot(testDirections(:,1),testDirections(:,2),spectralDifference((i-1)*length(testDirections)+1:i*(length(testDirections))));
% title for each subplot, where OA denotes Order of Ambisonics, DFE
% denotes diffuse-field equalisation and PBC denotes predicted binaural
% colouration.
averagePBCvalue = mean(spectralDifference((i-1)*length(testDirections)+1:i*(length(testDirections))));
switch i
case 1
title(strcat('1OA no DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
case 2
title(strcat('3OA no DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
case 3
title(strcat('5OA no DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
case 4
title(strcat('1OA with DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
case 5
title(strcat('3OA with DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
case 6
title(strcat('5OA with DFE. Mean PBC=',num2str(averagePBCvalue),' sones'))
end
c2 = colorbar; c2.Label.String = 'PBC (sones)';
caxis([minValue,maxValue]);
xlim([0 180]); % as this data is only in a hemisphere, constrain axis limits
end
end
function local_heatmap_plot(az,el,spectralDifference)
% Plot spectral difference of a large spherical set of points on a
% rectangular plot. Need input vectors of azimuth, elevation and the
% spectral difference of the points.
xlin = linspace(min(az),max(az),180*2);
ylin = linspace(min(el),max(el),90*2);
[X,Y] = meshgrid(xlin,ylin);
Z = griddata(az,el,spectralDifference,X,Y,'cubic');
surf(X,Y,Z,'EdgeColor','none')
xlabel('Azimuth (°)'); ylabel('Elevation (°)');
set(gca, 'XDir', 'reverse', 'YTick', -75:75:75, 'XTick', -150:75:150);
xlim([-180 180]); ylim([-90 90]); view ([0 90]);
colormap(flipud(parula)); set(gcf, 'Color', 'w');
axis tight; box on; pbaspect([2 1 1]);
end